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Chapter 1

Introduction

This report describes work concerned with automating the operation of complex physical
systems; in particular, those involved in space missions. Such operations include subsystem
monitoring, preventative maintenance, malfunction handling, fault isolation and diagnosis,
communications management, maintenance of life support systems, power management,
monitoring of experiments, satellite servicing, payload deployment, orbital-vehicle opera-
tions, orbital construction and assembly, and control of extraterrestrial rovers. Automation
of these tasks can be expected to improve mission productivity and safety, increase versa-
tility, lessen dependence on ground systems, and reduce demands for crew involvement in

system operations.

1.1 Design of an Embedded Reasoning System

The aim of our work is to design an embedded reasoning system capable of assisting as-
tronauts in handling tasks such as those mentioned above. The system should be capable
of responding to and diagnosing abnormalities in space vehicle operations. It should be
able to integrate information from various parts of the space vehicle systems, and recognize
potential problems prior to alarm limits being exceeded.

The system should suggest and execute strategies for containing damage and for making
the system secure, without losing critical diagnostic information. It should be able to utilize
standard malfunction handling procedures, taking account of all the relevant factors that, in
crisis situations, are easily overlooked. False alarms and invalid parameter readings should
be detected, and alternative means for deducing parameter values utilized where possible.

In parallel with efforts to contain damage and temporarily reconfigure vehicle subsys-
tems, the system should be able to begin diagnosis of the problem and adjust reconfiguration
strategies as diagnostic information is obtained incrementally. The system should also be
capable of communicating with other systems to seek information, advise of critical con-
ditions, and avoid harmful interactions. Throughout this process, the system should be
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continually reevaluating the state of the space vehicle, and be capable of changing focus

and responding to more serious problems should they occur.

Finally, the system should be able to explain the reasons for any proposed course of
action in terms that are familiar to astronauts and mission controllers. It should be able to
graphically display its schematics, the procedures it is intending to execute, and the critical

parameter values upon which its judgement is based.

This view of the system, together with the strategic and operational requirements of
NASA'’s space program, demands that the system be designed to

e Monitor and react in real time to the changes in situation that arise during space

operations.

e Rapidly select and execute the most appropriate operational procedures and strategies

in any given situation.

o Represent and reason about critical properties that determine operational options,
such as the present configuration or mode of the spacecraft and the relevant flight

rules.

e Be robust, i.e., cope with modifications to planned goals and priorities, and not fail in
the presence of ambiguous or inaccurate feedback from the operational environment.

e Support distributed operations, i.e., interact and cooperate with other systems that
are monitoring and controlling other parts of the spacecraft.

o Interact with the astronauts and mission controllers in a clearly understandable way,
i.e., appear to behave as much like a rational human assistant as possible.

e Allow established operational procedures and strategies to be changed easily without
extensive modifications of source code when better strategies are developed.

e Be extensible, i.e., allow changes in the configuration or design of the spacecraft and
its subsystems to be incorporated easily.

e Be verifiable, i.e., provide a clear meaning for the knowledge represented in the system
and to ensure that the system behaves correctly with respect to this knowledge.

1.2 Previous Approaches

Previous attempts to design embedded reasoning systems have been able to accomplish
few of the goals mentioned above. These approaches are discussed briefly in the following

sections.



1.2.1 Conventional Software

It is highly unlikely that systems based on conventional automation techniques would be
able to achieve the performance criteria discussed above. Such systems are usually very
inflexible and unresponsive to the skill level of the operators using them. The control and
diagnostic procedures that are used cannot be matched to the exigencies of the current
situation nor can they cope with reconfiguration or modification of the underlying space-
vehicle systems. Performance of tasks cannot be guided by useful advice from astronauts
and technicians and, when a given task cannot be performed, no explanation is given as to
the cause of failure. Because conventional systems perform a prescribed sequence of tests
and actions, they cannot utilize knowledge of a particular situation to focus attention on
more likely trouble spots. Consequently, real-time performance is highly unsatisfactory.
They lack robustness, as they cannot fall back on other, perhaps less optimal, operational
procedures if the current one fails to achieve its purpose. Furthermore, it is difficult and
costly to modify or improve the encoded operational and malfunction-handling strategies

and procedures.

1.2.2 Conventional Expert Systems

Conventional expert systems are not designed to handle effectively the reasoning and plan-
ning that must be performed under dynamic, real-time constraints. Unless one is concerned
solely with simple monitoring tasks, it is essential that any embedded reasoning system be
able to reason about actions and plans. Most existing real-time expert systems provide
means for the system to interact with its environment through sensors and effectors, but
their representations and reasoning capabilities differ little from those of conventional ex-
pert systems. These systems are far too weak to be used effectively for the kind of complex
operations with which we are concerned. One must take the notions of actions and plans
seriously, and utilize representations and reasoning mechanisms suited to handling these
entities. A review of existing real-time reasoning systems and their shortcomings can be
found in reference [10].

Another major obstacle to the use of conventional rule-based expert systems is that
space operations require the use of a great variety of operational procedures. Conventional
expert systems are simply not designed to represent or utilize such procedural knowledge.
The various tests and actions performed on a spacecraft have diverse outcomes with different
implications in different contexts. The only way to represent this in a rule-based formalism
is to keep track of the procedural context by the use of so-called control conditions. This
form of representation becomes very clumsy, reduces efficiency, and nullifies most of the
desirable properties of an expert system. In essence, the rule-based approach makes things
implicit that should be explicit (i.e., the flow of control) and makes things explicit that
should be implicit (i.e., the context).



With the addition of the control conditions necessary to represent procedural informa-
tion, extensibility and robustness are lost; each control condition must be unique and should
not be used by any other rule other than the one for which it was intended. Explanatory
capacity is poor, as there is no direct access to the entire procedure; each rule must be ex-
plicated in isolation — with no satisfactory explanation for the meaning or use of the control
conditions. Moreover, the validity of a rule containing a control condition depends on the
validity of the rule or rules that inserted the control condition into the database, which in
turn depend on the rules that inserted their control conditions into the database, and so on.
One could never be certain that a rule would not be invoked unexpectedly, with perhaps
catastrophic effects. Furthermore, and perhaps most importantly, it is not possible for the
system to reason about a procedure as a whole - for example, to assess its usefulness or
criticality in a given situation.

Experience in trying to apply conventional expert systems to problems in fault diagnosis
and maintenance has shown that these difficulties are severe. To overcome them, some
expert systems offer facilities for representing procedural knowledge (e.g., Centaur .
In most cases, however, such procedures are represented simply by LISP code (or some
equivalent) that can be invoked via the database. The procedures are ad hoc additions,
have limited control constructs, cannot be reasoned about, and cannot be interrupted on
the basis of newly observed data or newly established goals.!

1.2.3 Planning Systems

Most existing architectures for embedded planning systems consist of a plan constructor
and a plan executor. As a rule, the plan constructor formulates an entire course of action
before commencing execution of the plan [14]. Execution is usually monitored to ensure
that the plan will culminate in the desired effects; if it does not, the system can return
control to the plan constructor so that it may modify the existing plan appropriately.

However, in real-world domains, much of the information about how best to achieve
a given goal is acquired during plan execution. For example, the choice of how to best
normalize tank pressure while handling a jet failure may depend on observations made
during the diagnostic process. In such situations, one cannot use a system that plans in full

prior to commencing execution.

Real-time constraints pose yet further problems for traditionally structured planning
and reasoning systems. First, the planning and deductive techniques typically used by
these systems are very time consuming. While this may be acceptable in some situations,
it is not suited to domains where replanning is frequently necessary and where system vi-
ability depends on readiness to act. Second, traditional planning systems usually provide

1The impracticality of utilizing standard expert systems to represent procedural knowledge is discussed
in greater detail in reference [8].



no mechanisms for responding to new situations or goals during plan execution, let alone
during plan formation. Yet the very survival of an autonomous system may depend on its
ability to react to new sitnations and to modify its goals and intentions accordingly. For
example, a space-station robot should be capable of deferring work on an onboard experi-
ment if it notices something more critical, such as a possible jet malfunction. While many
existing planners have replanning capabilities, none have yet accommodated modifications
to the system’s underlying set of goal priorities.

Furthermore, traditional planning systems have been designed for constructing plans
solely from knowledge about the primitive actions performable by the system. However,
many plans are not constructed from first principles, but from knowledge acquired in a
variety of other ways — for example, by being told, by learning, or through training.
Moreover, these plans may be very complex, involving a variety of control constructs (such
as iteration and recursion) that are normally not part of the repertoire of conventional
planning systems. Thus, although it is obviously desirable that an embedded system be
capable of forming plans from first principles, it is also important that the system possess
a wealth of precompiled procedural knowledge about how to function in the world [6].

1.2.4 Robotic Controllers

A number of systems developed for the control of robots and other real-time processes do
have a high degree of reactivity (3, 9]. Such architectures could lead to more viable and
robust systems than the traditionally structured planning systems. Yet most of this work
has not addressed the issues of general problem-solving and commonsense reasoning; the
work is instead almost exclusively devoted to problems of navigation and execution of low-
level actions. It remains to extend or integrate these techniques with systems that have the
ability to completely change goal priorities, to modify, defer, or abandon current plans, and
to reason about what is best to do in light of the current situation.

1.3 Approach

To achieve the kind of behavior discussed above, the architecture of the reasoning system
should be both goal-directed and reactive. That is, while seeking to attain specific goals,
the system should also be able to react appropriately to new situations in real time. In
particular, it should be able to completely alter focus and goal priorities as circumstances
change. In addition, the system should be able to reflect on its own reasoning processes. It
should be able to choose when to change goals, when to plan and when to act, and how to
use effectively its deductive capabilities.

To facilitate cooperation with other systems as well as astronauts and other users, the
very design of the system should be based on principles of rational interaction. In particular,



it should be possible to ascribe beliefs, goals, and intentions to the system, and to interact
with it in terms of these psychological attitudes. In turn, the system itself should be able
to reason about and utilize information regarding the beliefs, goals, and intentions of other

systems or agents.

SRI International has been conducting research over a number of years into the design
of systems having these properties. The set of techniques and concepts are called Procedural
Reasoning Systems [5, 6, 7, 8).

1.4 This Report

In previous reports to NASA we focussed primarily on the representation and use of proce-
dural knowledge. In this report, we shall concentrate on those aspects of the problem that
are critical in the design of embedded reasoning and planning systems.

Chapter 2 contains an overview of the Procedural Reasoning System developed at SRI.
Chapter 3 describes some critical system functionalities that are required in this and similar
applications. Chapter 4 describes the application domain and provides various examples
of system operation. This chapter is perhaps the most interesting for those who are not
interested in technical details and can be read prior to Chapters 2 and 3. Conclusions are
presented in Chapter 5.



Chapter 2

Overview of the Procedural

Reasoning System

As the sample problem domain, we chose the task of malfunction handling for the Reaction
Control System (RCS) of NASA’s space shuttle. The shuttle contains three such systems
— one forward and two aft. Each is a relatively complex propulsion system that is used
to control the attitude of the shuttle. A part of one of the malfunction procedures from
NASA’s malfunction handling manuals is shown in Figure 2.1. These procedures can be
viewed as unelaborated plans of action, and are designed to be executed in a complex and

changing environment.

The reasoning and planning system that we applied to this problem is called a Procedural
Reasoning System (PRS) [6, 8]. PRS consists of a database containing current beliefs or facts
about the world; a set of current goals to be realized; a set of plans (which, for historical
reasons, are called Knowledge Areas or KAs) describing how certain sequences of actions
and tests may be performed to achieve given goals or to react to particular situations;
and an intention structure containing all currently active (executing) KAs. An interpreter
(or inference mechanism) manipulates these components, selecting appropriate plans based
on the system’s beliefs and goals, placing those selected on the intention structure, and

executing them.

The basic structure of PRS is shown in Figure 2.2. The system interacts with its
environment (including other systems) through its database (which acquires new beliefs in
response to changes in the environment) and through the actions that it performs as it

executes its intentions.

2.1 The System Database

The contents of the PRS database may be viewed as representing the current beliefs of the
system. Some of these beliefs are provided initially by the system user. Typically, these
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Figure 2.2: Structure of the Procedural Reasoning System

will include facts about static properties of the application domain, such as the structure
of some subsystem or the physical laws that must be obeyed by certain mechanical compo-
nents. Other beliefs are derived by PRS itself as it executes its KAs. These will typically
be current observations about the world or conclusions derived by the system from these
observations, and these may change over time. For example, at some times PRS may be-
lieve that the pressure of an oxidizer tank is within acceptable operating limits, at other
times not. Updates to the database therefore necessitate the use of consistency maintenance

techniques.

The database itself consists of a set of state descriptions describing what is [believed to
be] true at the current instant. We use first-order predicate calculus for the state descrip-
tion language. State descriptions can contain variables (implicitly assumed to be univer-
sally quantified)! and the usual logical connectives (A, V, and -, representing respectively
conjunction, disjunction, and negation). A sample set of database beliefs for the RCS

application is given below.

(type manifold frcs-ox-manf-1)
(type p-xdcr frcs-ox-manf-1-p-xdcr)
(type valve frcs-fu-tk-isol-12-valve)

1Logical variables are represented in PRS by names with a § prefix (see Section 3.12).
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(part-of frcs-ox frcs-ox-manf-1)
(associated-unit frcs-ox-manf-i-p-xdcr frcs-ox-manf-1)
(connects frcs-ox-tk-isol-12-valve frcs-ox-tk frcs-ox-tk-12-leg)

(status frcs-ox-manf-1-p-xdcr good)
(position frcs-ox-tk-isol-12-valve op)
(value frcs-ox-manf-i-p-xdcr 245)

The first three facts represent type information. For example, the third fact states that
the object named frcs-fu-tk-isol-12-valve is a valve. The next three facts represent
structural information, describing in this case a part-whole relationship, the positioning of a
sensor, and a valve connection within the system. The last three facts describe dynamic facts
that represent the current status and parameter values of the system. In the application
explored here, over 650 such facts are utilized for the forward RCS alone.

State descriptions that describe internal system states are called metalevel expressions.
The basic metalevel predicates and functions are predefined by the system. For example,
the metalevel expression (*goal g) is true if g is a current goal of the system.2.

Given such a database, the diagnostic procedures can make use of this information to
perform what might be considered simple commonsense tasks for an astronaut. For exam-
ple, the instruction to “return to normal configuration except leave affected tank isolation
valves, manifolds, and corresponding cross-feed valves closed” (Figure 2.1) can be directly
represented and reasoned about. In particular, the instruction can be represented in a way
that is impervious to system reconfiguration, is not hard-wired to particular identifiers, and
can be used for any of the three reaction control systems on the shuttle.

2.2 Goals

Unlike most AI planning and reasoning systems, PRS goals represent desired behaviors of
the system, rather than static world states that are to be eventually achieved. Hence goals
are expressed as conditions over some interval of time (i.e., over some sequence of world
states). A given action (or sequence of actions) is said to succeed in achieving a given goal
if its execution results in a behavior that satisfies the goal description.

Goal behaviors can be described by applying a temporal operator to a state description.
Three temporal operators are currently being used. The expression (!p), where p is some

*We adopt the convention that metalevel predicates that are prefixed with an asterisk denote attitudes
(e.g., goals, beliefs, or intentions) of the system itself; attitudes of other agents are represented by predicates
without the asterisk and take an additional argument (the name of the agent). For historical reasons, we
also use the predicate sfact synonymously with sbelief
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state description (possibly involving logical connectives), is true of a sequence of states ifpis
true of the last state in the sequence; that is, it denotes those behaviors that achieve p. Thus
we might use the behavior description (! (position frcs-fu-tk-isol-12-valve cl)) to
describe the goal to close valve frcs-fu-tk-isol-12-valve.

The expression (?p) is true of a sequence of states if p is true of the first state in
the sequence. That is, it can be considered to denote those behaviors that result from a
successful test for p. Let’s examine this notion more carefully. We call an action a test for
a condition p if successful completion of the action guarantees that p were true just prior
to beginning the action. For example, imagine an action a such that, if p were true just
prior to executing a, a certain condition, ¢ say, would be observed at its completion (e.g., @
might be the action of dipping litmus paper in a solution, ¢ the condition that the paper be
red, and p the condition that the solution be acidic). Clearly, if g is observed, the sequence
of states involved in performing a must have been such that p is true of the first of these
states. On the other hand, if ¢ is not observed, p may not be true of the first state in the
sequence. Thus, a will count as a test for p if it signals success when g is observed and

signals failure otherwise.

Finally, (#p) if true if p is preserved (is maintained invariant) throughout the sequence.
Usually, when one establishes a goal of maintenance, it is intended that that goal be main-
tained until some condition becomes true. Thus, goals of maintenance usually appear in

the form (#p A !q), meaning to preserve p until ¢ is achieved.

Behavior descriptions can be combined by means of the logical operators A and V,
representing, respectively, the conjunction and disjunction of the component expressions.
Existentially quantified variables are represented by symbols prefixed with a $ sign.

As with state descriptions, behavior descriptions are not restricted to describing the
external environment, but can also characterize the internal behavior of the system. Such
behavior specifications are called metalevel behavior specifications. One important met-
alevel behavior is described by an expression of the form (=> p). This specifies a behavior
that places the state description p in the system database. Another way of describing this
behavior is (! (*belief p)).

2.3 Knowledge Areas

Knowledge about how to accomplish given goals or react to certain situations is represented
in PRS by declarative procedure specifications called Knowledge Areas (KAs). Each KA
consists of a body, which describes the steps of the procedure, and an invocation condition,
which specifies under what situations the KA is useful. Together, the invocation condition
and body of a KA express a declarative fact about the results and utility of performing
certain sequences of actions under certain conditions [6]-
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The body of a KA is represented as a graphic network and can be viewed as a plan
or plan schema. Each arc of the network is labeled with a goal to be achieved by the
system. This is in contrast to traditional programming languages or flowcharts, which
label each step either with some primitive command or some specific subroutine to be
called. By establishing goals rather than calling named subroutines, the system is able to
reason about and choose the most effective means for accomplishing those goals in the given
circumstances. This allows PRS to react appropriately in a great range of situations and in
the presence of degraded or uncertain information. Moreover, the knowledge expressed in
any given KA is largely independent of other KAs, thereby providing a very high degree of
modularity and verifiability. It is thus possible to build domain knowledge incrementally,
with each component KA having a well-defined and easily understood semantics.

The invocation condition has two components: a triggering part and a contezt part.
Both must be satisfied for the KA to be invoked. The triggering part is a logical expression
describing the events that must occur for the KA to be executed. Usually, these consist of
some change in system goals (in which case, the KA is invoked in a goal-directed fashion)
or system beliefs (resulting in data-directed or reactive invocation), and may involve both.
The context part is a logical expression specifying those conditions that must be true of the
current state for the KA to be executed.

There are some properties of KAs that are crucial for the correct functioning of the
system. For example, if the KA is invoked by the establishment of some new goal, it is
important to know whether or not successful execution of the KA (i.e., reaching an end-
node) realizes that goal. These KA properties could be placed in the system database along
with the other facts that are pertinent to the application domain. However, for convenience
we place these facts in predefined slots in the KA structure itself.

Similarly, KA properties that are not essential to the functioning of the interpreter but
which may be required by application-specific metalevel KAs can either be placed in the
system database or in a special property slot of each KA. Such properties, for example,
might include information on the likelihood of success of the KA or its average execution
time.

A typical example of part of a KA is given in figure 2.3. It describes a procedure to
isolate a leak in an RCS. The invocation part describes under what conditions this KA is
useful. In this case, the KA is considered useful whenever the system acquires the goal to
isolate a leak in an RCS ($p-sys), provided the various type and structural facts given in
the context part are true. (In determining the truth value of the invocation part, some of
the variables appearing in the invocation part will be bound to specific identifiers. Indeed,
in this case, all the variables will be so bound.)

The KA body describes what to do if the KA is chosen for execution. Execution begins
at the start node in the network, and proceeds by following arcs through the network.
Execution completes if execution reaches a finish node (a node with no exiting arcs). If
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rcs-leak-isol

INVOCATION:
("GOAL (! (LEAK~ISOLATED $P-3Y3)))

CONTEXT:
(AND (°FACT (MANIFOLD=1 $P-SYS SMANF1))
(*FACT (MANIFOLD-2 $P-SYS SMANF2))
{*FACT (MANIFOLD-3 $P-SYS SMANFD))
(*FACT (MANIFOLD-4 $P-SYS SMANF4))
(®FACT (MANIFOLD=-5 $P-SVYS SMANFS))
(®FACT (TYPE HE-TANK SHE=-TK))
(*FACT (PAAT-OF 3P-SYS SHE-TK))
(*FACT (TYPE PAOPELLANT-TANK $PAOP-TK))
(*FACT (PAAT-OF 3P-SYS $PAOP-TK))
(*FACT (CONNECTS $V1 3PROP-TK $12-TANK-LEG))
(*FACT (CONNECTS V2 $12-TANK-LEG SMANF 1))
(*FACT (CONNECTS $VI SPAOP-TK 3345-TANK-LEG))
{*FACT (CONNECTS 3VA $348-TANK-LEG SMANF3J))
{*FACT (CONNECTS $V5 SHE-LEG $PAOP-TK)))

{7 (v (DECREASING $DELTA-P1)
(< (PRESSURE-OF SMANF1) 180,

(t (SECURED 3P-8YS))

(? (PRESSURE-CHANGE SMANF1 SOELTA-P1))

(? (& (NOT-DECREASING SDELTA-P1)
(O= (PRESSURE-OF SMANF1) 190.)))

?.OAL ACHIEVER?:
EFFECTS:
NI

PROPEATIES: (? (PRESSURE-CHANGE SMANF2 SOELTA-P2))
NiL

(7 (V (DECREASING SOELTA-P2)
{¢ (PRESSURE-OF SMANF2) 190,

ECREASING SDELTA-P2)
O= (PREDEURE-OF SMANF2) 190.)))

(1 (PRINT-UST (FQRMAT NIL
*~A 1/2 tank leg leak® () (PRINT-UST (FQAMAT NiL

$$-8YS))

{1 (PRINT-UST (FORMAT N

. ; A" *Leak in manifoid ~A®
Leak in manifold ~A SMANF2))

SMANF1)))

]
s11

=) (STAT MA, A
(*> (STATUS IMANF1 LEAK)) (=) (STATUS EMANF2 LEAK))

=)

(7 (& (NGT-DECREASING SDELTA-P2)
(= (PRESSURE-OF SMANF2) 190,

{? (& (NOT-DECREASING SDELTA-PT)

(? (v (OECREASING $DEL (> (PAESSURE -OF SMANFJ) 190.)))

(¢ (PRESSURE-OF §

(7 (PRESSURE-CHANGY SMANFA SOELTA-PA))

{? (& (NOT-DECREASING SOELTA-P4)
{de (PRESSURE~OF SMANF4) 180.)))

(7 (v (DECREASING ) (? (v (DECREASING 3O
(< (PRESSUN {< (PRESSURE-Q

(NOT-DECREASING SDELTA-P4)
(PRESSURE-OF SMANF4) 190.)))

P4)
MANF4) 190.))

(I (PRINT-UST JORMAT NIL
“Leak in manifold ~A®

{1 (PMIN""-UST (FORMAT NIL MANFJ))) O (PRYT-UBT (FORMAT NIL
“~A 3/74/5 tank teg leak® “Leak in manifold ~A®
$P-8YS)) SMANF4)))

{7 (PREARUAE -CHANGRA SHF-TK IDFL T A-PSYH)

Figure 2.3: Portion of a KA for Leak Isolation
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more than one arc emanates from a given node, any one of the arcs emanating from that
node may be traversed. To traverse an arc, the system must either (1) determine from the
database that the goal has already been achieved or (2) find a KA (procedure) that achieves
the goal labelling that arc. For example, to traverse the arc emanating from the start node
requires either that the system be already secured or that some KA for securing the RCS
be found and successfully executed. Similarly, to transit the next arc requires that some
KA be found for determining the pressure change ($delta-p1) in the manifold $manfi. If
the system fails to traverse an arc emanating from some node, other arcs emanating from
that node may be tried. If, however, the system fails to achieve any of the goals on arcs
emanating from the node, the KA as a whole will fail. For example, since only one arc
emanates from the start node in Figure 2.3, if all attempts to secure the RCS fail, this
procedure for isolating a leak in the system will also fail. The full KA for this prdcedure
consists of over 45 nodes and is the largest in the system.

Important properties of the KA are represented in the slots on the left side of the KA
structure. For example, the goal achiever slot is set to T (true), representing the fact
that, upon successfully completing this KA, the goal that triggered execution will have
been achieved.

Some KAs have no bodies. These are the primitive KAs of the system and have associ-
ated with them some primitive action that is directly performable by the system. Clearly,
execution of any KA must eventually reduce to the execution of sequences of primitive KAs
(unless, of course, each of the subgoals of the KA has already been achieved).

The set of KAs in a PRS application system not only consists of procedural knowledge
about a specific domain, but also includes metalevel KAs — that is, information about
the manipulation of the beliefs, desires, and intentions of PRS itself. For example, typical
metalevel KAs encode various methods for choosing among multiple applicable KAs, deter-
mining how to achieve a conjunction or disjunction of goals, and computing the amount of
additional reasoning that can be undertaken, given the real-time constraints of the problem
domain. In achieving this, these metalevel KAs make use of information about KAs that is
contained in the system database or in the property slots of the KA structures.

In the application described herein, about 70 object-level KAs were used together with
about 15 metalevel KAs.

2.4 The Intention Structure

The intention structure contains all those tasks that the system has adopted (chosen) for
execution, either immediately or at some later time. These adopted tasks are called in-
tentions. A single intention consists of some top-level KA or goal, together with all the
various [sub-] KAs that are currently being used as means to fulfilling the requirements of
the top-level KA. However, at any given moment, the intention structure may contain a
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number of such intentions, some of which may be suspended or deferred, some of which
may be waiting for certain conditions to hold prior to activation, and some of which may
be metalevel intentions for deciding among various alternative courses of action.

For example, in handling a malfunction in the RCS the system might have, at some
instant, three tasks (intentions) on the intention structure: one suspended while waiting for,
say, the fuel-tank pressure to decrease below some designated threshold; another suspended
after having just posted some goal that is to be accomplished (such as the securing of
the RCS); and the third (a metalevel procedure) being executed to decide which way to
accomplish that goal.

The order in which these intentions are executed is determined by metalevel KAs which
themselves must be adopted as intentions to become effective. This metalevel control allows
reasoning in arbitrarily complex ways about the scheduling of these tasks, while retaining

the ability to respond quickly and appropriately to new goals and beliefs.

2.5 The System Interpreter

The PRS interpreter runs the entire system. From a conceptual standpoint, it operates in
a relatively simple way. At any particular time, certain goals are active in the system and
certain beliefs are held in the system database. Given these extant goals and beliefs, a subset
of KAs in the system will be applicable (i.e., relevant). One or more of these applicable

KAs will then be chosen for execution by placing them on the intention structure.

In determining KA applicability, the interpreter will not automatically perform any
deduction. Both beliefs and goals are matched by using unification only. This allows
appropriate KAs to be selected very quickly and guarantees a certain degree of reactivity.
If we allowed arbitrary deductions to be made, we could no longer furnish such a guarantee.
However, PRS is always able to perform any deductions it chooses by invoking appropriate
metalevel KAs. These metalevel KAs are themselves interruptible, so that the reactivity of

the system is retained.

In the course of executing the chosen KA, new subgoals will be posted and new beliefs
derived. Changes in the environment may also modify the existing beliefs of the system.
When new goals are established, the interpreter checks to see if any new KAs are relevant,
chooses one or more, places them on the intention structure, selects an item from the
intention structure, and begins executing it. Likewise, whenever a new belief is added to
the database, the interpreter will perform appropriate consistency maintenance procedures
and possibly activate other relevant KAs. During this process, various metalevel KAs may
also be called upon to make choices among alternative paths of execution, choose among
multiple applicable KAs, decide what intentions to execute next, decompose composite goals

into achievable components, and make other decisions.
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Unless some new belief or goal activates some new KA, PRS will try to fulfill any
intentions it has previously decided upon. But if some important new fact or goal does
become known, PRS will reassess its current intentions, and perhaps choose to work on
something else. Thus, not all options that are considered by PRS arise as a result of means-
end reasoning. Changes in the environment may lead to changes in the system’s beliefs,
which in turn may result in the consideration of new plans that are not means to any already
intended end. PRS is therefore able to change its focus completely and pursue new goals
when the situation warrants it. In Imany space operations, this happens quite frequently
as emergencies of various degrees of severity occur in the process of handling other, less
critical tasks. PRS can even alter its intentions regarding its own reasoning processes — for
example, it may decide that, given the current situation, it has no time for further reasoning
and so must act immediately.

2.6 Multiple Asynchronous Systems

In some applications, it is necessary to monitor and process many sources of information
at the same time. Because of this, PRS was designed to allow several instantiations of the
basic system to run in parallel. Each PRS instantiation has its own database, goals, and KA
library, and operates asynchronously relative to other PRS instantiations. Communication
among the various PRS instantiations is achieved by message passing. The messages are
written into the database of the receiving PRS, which must then decide what to do, if
anything, with the new information. As a rule, this decision is made by a fact-invoked KA
(in the receiving PRS), which responds upon receipt of the external message. In accordance
with such factors as the reliability of the sender, the type of message, and its own beliefs,
goals, and current intentions, the receiver determines what to do about the message — for
example, to acquire a new belief, establish a new goal, or modify an existing intention.

In this particular application, two instances of PRS were set up. One, called INTERFACE,
handles most of the low-level sensor readings, controls effectors, and checks for faults in these
components. The other, called misleadingly RCS, contains most of the high-level malfunction
procedures, much as they appear in the malfunction handling manuals for the shuttle.

As an example of the communication between these two systems, consider the case in

which INTERFACE wishes to advise RCS that the valve frcs-fu~-tk-isol-12-valve is closed.
To do s, it would send RCS the message

(asserted INTERFACE (position frcs-fu-tk-isol-12-valve cl))

RCS could then choose what to do with this message, given appropriate KAs for re-
sponding to it. Note that the belief that the valve is clogsed is not directly inserted into
the database of the recipient. In complex domains in which processes or agents may be
unreliable, it is preferable to store the fact that some agent (INTERFACE in this case) has
asserted something, without committing to believing that assertion. The recipient then
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has the opportunity (using appropriate KAs) to accept the asserted fact and add it to its
database, to reject it as unreliable, or to combine it with other evidence in some other way.

For similar reasons, when some PRS agent, A, wants another PRS agent, B, to adopt
some particular goal, the only way this can be effected is by passing B a message that
requests that B establish the given goal. That is, A cannot directly establish a goal for B;
the best 4 can do is to get B to believe that A desires that B adopt the given goal. For
example, if RCS wished the INTERFACE to close a valve frcs-fu-tk-isol-12-valve, RCS
would send INTERFACE the message

(requested RCS (!(position frcs-fu-tk-isol-12-valve cl)))
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Chapter 3
Critical Features of the System

In this chapter, we review in greater depth some of the features of PRS that are critical to
its successful operation as an embedded real-time reasoning system.

3.1 Invocation of KAs

The applicability of a KA is specified by means of its associated invocation condition. The
invocation condition consists of two parts:

1. A logical expression specifying some pattern of initiating events

2. A logical expression specifying the contezt of invocation.

An initiating event is the acquisition of a new belief or the establishment of a new goal
or intention. For example, if the initiating condition of a given KA were
(*fact (position frcs-fu-tk-isol-12-valve cl)),
the KA would be invoked whenever the system acquired the belief that the
frcs-fu-tk-isol-12-valve was closed. Thus, it is the change in the system’s beliefs that
triggers the KA. Similarly, if the initiating condition were
(*goal (!(secured frcs))),
the KA would be invoked upon the system acquiring that goal.

The context specifies additional conditions that must be true for the KA to be invoked,
once it has been triggered by some initiating event. Thus, if the context of a KA were
(«fact (position frcs-fu-he-tk-A-valve cl)), the KA could only be invoked if the
system believed that the frcs-fu-he-tk-A-valve were closed.

Let’s say that [ is the initiating condition for a given KA and C is its invocation context.
Furthermore, let us assume that at moment t the system’s state (i.e., its beliefs, goals, and

intentions) is § and at the next moment ¢’ the state is S’. Then the KA will be invoked if
and only if
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(§'-8)kFITand S'FC

where z | y is true if the truth of expression y can be directly deduced upon unifying each

of y’s components with the components of z.

It is important to note that the only way a KA can be invoked is by the occurrence of
some initiating event or change in the system’s beliefs, goals, or intentions. Should such an
event trigger a KA, and that KA not be immediately adopted as an intention, then that event
cannot re-trigger the KA on subsequent cycles. (Of course, some subsequent occurrence of
the same type of event could trigger the KA afresh.) What are the consequences of this?

Imagine that two different alarms, alarm-1 and alarm-2, are sounded at once, each
triggering a different KA (say, KA-1 and KA-2, respectively). As the system has more
than one applicable KA from which to choose, one or more meta-KAs will be invoked to
determine what to do. If, as a result of the metalevel processing, one of these KAs is chosen
for adoption (say KA-1), the other invoked KA will simply be discarded. In this case,
although the system would “know” that alarm-2 had sounded (it would be in the system
database), it would take no action with respect to that alarm. This need not mean that it
would never take any action in response to that alarm, although usually this would be so.
For example, there may be some KA that is invoked every now and then to check on things
that have been left unattended. Such a KA could notice that alarm-2 was on, that nothing
had been done about it, and then, indirectly, invoke KA-2 to respond to it.

The other possibility, dependent on the metalevel processing, is that both KAs are
adopted as intentions. In this case, both alarms will be attended to. The order in which
KA-1 and KA-2 are evaluated will depend on the ordering of their corresponding intentions
on the intention structure; for example, both could be pursued in parallel, or one could be
deferred until the other was finished. We say more about the intention structure below.

In summary, the system must respond to events — and form intentions appropriate to
those events — as they occur. As changes to elements of the system’s state are, in most
cases, rare in comparison to the total number of state elements, system efficiency (and
response time) is thereby substantially enhanced. On the other hand, as at any time the
current state of the system is determined entirely by its history of changes,! we loose no
deductive capabilities by this more restricted form of KA activation.

'This assumes an empty initial state. But if the initial state, s say, is not empty, we can transform the
problem into an equivalent one that has an empty initial state and that begins with an event that directly
brings about 1.
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3.2 Goals and Intentions

Goals are of two kinds: intrinsic goals and operational goals. Intrinsic goals® are those
that the system acquires directly from some specific sources. The only source of intrinsic
goals for the shuttle implementation is the user (astronaut or mission controller), who has
the power to impose arbitrary goals on the system. In other implementations, one could
envisage other sources capable of imposing such goals. For example, an autonomous system
being controlled by PRS might allow special sensors to generate intrinsic goals, such as to
recharge batteries when battery power decreases below a certain threshold, or to escape in
the presence of an overwhelming foe.

Operational goals are those that the system acquires in attempting to fulfill some in-
tention. That is, operational goals are those that are established during execution of a KA
that has been previously adopted as an intention. Thus, operational goals are always means
to some end, although that end may not always be explicit. For example, when a KA is
invoked by the occurrence of a new system goal, g, all goals in the body of the KA will be
means toward achieving g. On the other hand, when a KA is invoked by the occurrence of a
new system belief, the goals appearing in the KA are means of responding to the aquisition
of that belief, but the end result the system is aiming to achieve is left unspecified. For
example, upon the activation of some alarm, a KA that diagnoses the fault and corrects it
might be invoked. The reason for invoking this KA (presumably, to maintain the integrity
of the space-craft) is not specified anywhere, yet each of the goals occurring in this KA are
means to that (unspecified) end.

A KA invoked by the acquisition of some intrinsic goal or by some change in system
beliefs can give rise, if adopted by the system, to a new system intention. In this case, the
initiating event is called the purpose of the intention and the KA so invoked is called the
head of the intention. As the head KA is executed, it will give rise to various operational
goals. The KAs that respond to these operational goals will form part of the originating
intention, together with any KAs that these KAs in turn invoke, and so on. Thus, a single
intention consists of a head KA (invoked either by an intrinsic goal or new belief), together
with the various other KAs that are utilized in attempting to execute the head KA.

3.3 The Establishment and Removal of Goals

Intrinsic goals are established by specific external sources and, as with beliefs, must be
responded to immediately if at all. As with beliefs, they will be remembered, even if no
intention is formed to accomplish them. They will be removed if explicitly requested (by
the external source that established them) or if the system comes to believe that they are
accomplished (either through its own efforts or those of some other agent).

2Some philosphers would call these desires.

22



Operational goals are established by the attempted execution of some KA that is part
of some intention of the system. Should the system attempt to achieve an operational goal
and fail, that goal will be reestablished, and another attempt made to achieve it. This will
continue until the system comes to believe either that the goal is accomplished, through its
own efforts or those of some other agent, or that the goal cannot be readily accomplished.
Once this state is reached, the goal will be dropped.

This raises two related issues: what other attempts are made to achieve the goal and
how does the system come to believe a goal cannot be readily accomplished? We shall
answer the latter question first. There are two ways the system can come to believe that a
goal cannot be accomplished. One way is to deduce it, but this will depend on the provision
of appropriate metalevel KAs for performing the deduction and upon their being invoked.
The other way is simply to fail in all attempts at achieving it.

This brings us to the former question — what attempts does the system make to achieve
a given goal? The system currently tries, exactly once, every possible KA instance that can
possibly achieve the goal. It does not ask that previously achieved goals be reachieved (in
some other way), nor does it try the same KA instance more than once. In this sense, it
is equivalent to a “fast-backtrack” parser [13]. There is good reason for at least the first of
these choices.

Unlike planning some course of action or parsing sentences, once some goal has been
achieved there is no point in trying other ways to achieve it, even if these may benefit
attempts to achieve subsequent goals. Or more accurately, there is no reason to constrain
oneself to look only at other ways to achieve this goal. For example, consider that we wish
to achieve some goal f and then some goal g. Let’s say that, in achieving f, some condition
p is made true (perhaps as a side effect of the actions taken to achieve f). Unfortunately,
with p true, it proves impossible to achieve g with the KAs at our disposal (because, let’s
imagine, —p is part of the context of the invocation part of all KAs that achieve g). Now, a
planner or full-backtrack parser might reattempt to achieve f some other way, in the hope
that it would succeed without incurring the troublesome side-effect. But PRS has actually
achieved f - and also p - so that there is no use trying other methods to reachieve that
goal! Instead, one should now try to achieve -p, preferably while maintaining f.

Now, either there is a way to achieve -p or there is not. If there is not, there is nothing
we can do. If we can achieve —p, and we are content to try it, then we could rewrite the KAs
that achieve g to have —p as their first subgoal, rather than as a constraint on invocation.
In this way, it is possible to write all KAs in a form whereby forbidding PRS to retry
successfully achieved goals does not restrict its capabilities.

The remaining issue concerns the number of tries we make of a single KA instance to
achieve a given goal. It is, of course, quite possible that, where the first try does not succeed,
the next will, even if we carry out exactly the same actions as we did the first time. However,
to determine if retrying could succeed would, in most practical cases, require knowledge of
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the state of the world that goes well beyond that available to the system. Assuming the
lack of such knowledge, we took the reasonable course of allowing at most one try for each
KA instance. This clearly affects the capabilities of the system — in some cases, it may be
that trying twice would succeed where trying once does not.

Once all attempts at achieving a given goal have in this way been exhausted, it is still
possible for some metalevel KA to respond to this failure and invoke yet other means to
achieve the goal. For example, a meta-KA could invoke certain deductive machinery, or
could decide to retry some KA instances that, although having been tried once, appear (for
some reason known to the meta-KA) to be worth trying again.

3.4 Goals over Sets of Objects

As so far described, goals can be one of three types, denoted (!p), (?p), and (#p), where p
is some condition of the state of the world. This condition has been restricted to formulas
of first-order predicate calculus, possibly containing existentially-quantified variables where
the scope of the existential includes the entire expression.

For example, consider the arc label (! (P $x $y)) where $x has been bound to (f A $z)
and $y and $z are unbound. The meaning of this expression is to try to achieve a state
that satisfies 38y $z . (P (£ A $2) $y). This is quite sufficient for most tasks, such as
the closing of particular valves or the determination of particular transducer readings.

However, there are many other tasks for which it is convenient to quantify over all
objects having a certain property. For example, one might want to turn off all the lights
in the house, or close all affected manifolds. It would be convenient to represent such
conditions by expressions of the form ({ $y | p($y)} g($y)), where p($y) is a formula
containing at least one free occurrence of $y and g($y) is a goal formula also containing a
free occurrence of $y. The meaning of this expression is that, for all $y that satisfy p($y),
the goal g($y) is to be achieved.

As currently implemented, PRS requires two steps to achieve this effect. The first collects
the set of objects upon which the action is to take effect, and the second then applies the
action to elements of that set. Moreover, for each action that we wish to operate on a set,
we must specify a new KA that is specifically designed for that purpoée. An example of
this approach is shown in Figure 3.4. In this case, it is necessary to close all the valves of
the system in a specified order: first the manifold valves, then the propellant-tank valves,
and finally the helium-tank valves. This is clearly a cumbersome way to represent such
operations. We expect that subsequent implementations of PRS will use a form more
similar to that described in the paragraph above.

One has to be careful with the set operator. First, the set of objects must satisfy
the specified condition at the beginning of the interval over which the composite action is
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rcs-secure

INVOCATION:
{AND (*QOAL (! (SECURED 33Y$)))

(*FACT (TYPE PROPELLANT-3YSTEM §Svs))) | ¢ (STATUS DAP FREE-ORNT))

CONTEXT:
NIL

(! (= M
(ALL $M1
(& (TYPE MANIFOLD-VALYE $M1)
(PART-OF $3YS $M1))))

gOAL ACHIEVER?:

EFFECTY:
NIL
(1 {POSITION-UPDATE $M CL))
PROPERTIES:
{1 (e ST
NIL (ALL $T1

(& (TYPE PROPELLANT-TANK-VALYE $T1)
(PART-OF $8Y85 $T1)))))

(1 {POSITION-UPDATE $T CL))

(= SH
(AL $M1
(& {TYPE HE-TANK-YALVE $H1)
(PART-OF $3YS SH1)))

(I {(POSITION-UPDATE $H CL))

(! PRINT-UST (FORMAT NI "~a secured® $8YS)))

Figure 3.1: A KA with Goals over Sets of Objects
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performed. Second, the system will not assume that it knows about all objects that can
possibly satisfy a given predicate unless the predicate is specified to be closed-world. In the
case that the predicate is not so specified, a KA must be found that matches the composite
goal directly. (It is not necessary that such KAs be able to identify explicitly all the specified
objects. For example, one can turn off all the lights in a house without identifying them
simply by turning off the power supply to the house).

Third, any existentially quantified variable appearing in p($y) will not retain its binding
beyond the scope of the entire goal expression. This is because its binding may depend on
the binding of the set variable $y, and this information is only retained during the execution
of the goal g($y).

3.5 Conditional Intentions

Sometimes it is desirable to form the intention that, when some condition occurs, some
action should be performed. We call these conditional intentions. Typically, we may get
to a certain point in a procedure (KA) where we want to suspend execution until some
condition is found to be satisfied.

For example, after having switched from a faulty regulator to a properly functioning one,
we may want to switch control of the regulator valve to the on-board computers (GPC).
However, this cannot be done until the pressure in the system drops below 312 psi, as
otherwise the computers will assume a failure in the new regulator and shut it off. Thus,
one would like to be able to suspend further execution of the procedure until the pressure
dropped below 312 psi, after which execution can proceed.

In PRS, conditional intentions are created by means of certain metalevel KAs. Their
effect is to suspend execution of some given intention, which then remains in a dormant
state until the appropriate activation condition (in the above case, a pressure below 312
psi) is satisfied (see Section 3.6).

Conditional intentions arise in many other situations; indeed, it would be hard to imagine
an effective real-time reasoning system that did not require them. For example, conditional
intentions are necessary in the following cases:

e When certain events may be indicative of a problem but allowance has to be made
for transient effects; one often has to wait until any transients die away.
¢ When sampling parameters over time, such as when a rate of change is required.

e When waiting for a reply from a request to another system or a user; it is often
desirable to suspend the process making the request until an answer is received, and
if not received within a reasonable time to adopt some other course of action.
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The Intention Lraph 1s:
Wosnmn FRCS-PROP-TK-ISOL-12-SHITCH CL)]

+(SOAK #)¢
Fneoussr RCS u)]

The Intention Graph is:
[ﬁosnmn FRCS-PROP-TK-1S0L-12-TALKBACK ap)]

[*(SDHK #)+ [(POSITION FRCS-PROP-TK~-ISOL-12-SHITCH CL)]

[(REQUEST RCS a)]
The Intention Graph is:
[(T=osnmn FRCS-PROP-TK-ISOL-12-TALKBACK BP)]

[(POSITION FRCS-PROP-TK-IS0L-12-SHITCH CL)]

[(Tu—:ouesr RCS #) ]

Figure 3.2: An Intention Structure

Of course, it is essential that, while waiting for an activation condition to become true,
the system continue to monitor the environment and continue to execute other intentions
as required. Thus, for example, while waiting for the pressure to drop below 312 psi, the
RCS system keeps monitoring the status of the shuttle, responds to any observed changes
in the situation (such as a failure in some other component), and performs any other tasks
demanded of it.

3.6 Intention Types

One of the most interesting features of PRS is the manipulation of intentions within the
intention structure. The purpose of this and the following two sections is to explain the
mechanisms for manipulating the intention structure and how they can be customized to a

particular application.

The intention structure contains those KAs that have been chosen by the system to be
executed. The system commits to these intentions; it will “try its best” to achieve them and
plan its other activities in accord with them. The set of intentions comprising the intention
structure form a partial ordering such as shown in Figure 3.2. Those that are roots of this
graph (i.e., have no predecessors) are candidates for becoming the current intention. The
current intention is the one that is currently being executed, and is surrounded by two
small arrows in the figure. The directional arcs shown in the figure represent precedence
constraints on the intentions. That is, the intention earlier in the ordering (as defined
by the arcs in the partial order) must be finished (and thus disappear from the intention
structure) before intentions appearing later in the ordering. This precedence relationship
between intentions enables the system to establish priorities and other relationships between
intentions.

An intention can be in one of three possible states:
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Normal: This is the most common state. If such an intention is a root of the graph then
it can be activated. Otherwise, it must wait until all its predecessors are finished.

Sleeping: A sleeping (or conditional) intention is one whose execution is suspended, await-
ing some condition to be satisfied. To enter this state, an appropriate metalevel KA
must be utilized. This metalevel KA can be invoked by the intention that is to be
suspended or by some other intention outside it. The sleeping state implies the pres-
ence of an activation condition for the intention. This activation condition is a logical
expression evaluable in the environment of the intention. As long as it is false, the
intention is kept sleeping. As soon as it becomes true, the intention is put into a
woken state.

Woken: As its name implies, an intention is in a woken state if has been “awakened” after
having been in a sleeping state. The woken state is exactly the same as the normal
state, except that if there is more than one possible current intention, the system
will prefer the most recently woken one. As a result, the system will tend to activate
intentions which have just been awakened. As soon as such an intention has been
activated, the woken state is exited and the intention returns to the normal state.

3.7 Establishing Intentions — The System Interpreter

Intentions are established in two ways: (1) by the system interpreter; and {(2) by partic-
ular metalevel KAs. The operation of the interpreter in establishing intentions is worth
examining. The main problem to be solved is that, on any cycle, a number of KAs may be
applicable. It is thus necessary to decide what to do with these applicable KAs — in par-
ticular, how many (if any) to establish as intentions and how to insert those so chosen into
the intention structure. The notion of metalevel KAs was introduced to provide maximum
flexibility in making these decisions.

But we have to find a mechanism for bringing these metalevel KAs to bear at the
appropriate time. The way we chose to do this was to include in the invocation part of the
metalevel KA some condition on the number or kind of ob ject-level KAs that are applicable
at each cycle. For example, a particular metalevel KA might be invoked on the basis of
there simply being more than one applicable object-level KA at the current moment.

To enable this scheme to work, we first have to determine which object-level KAs are
applicable on each cycle. This information becomes a new system belief. In particular,
on each cycle, the system acquires a belief about the set of KAs applicable on that cycle,
expressed as (soak z), where z is the list of applicable KAs. It is then determined whether
or not the aquisition of this new belief (i.e., (soak z)) triggers any new [metalevel] KAs.
If it does, the system acquires a new belief about the applicability of these metalevel KAs.
In fact, it does so simply by updating the belief (soak z) so that the list £ now contains
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exactly those metalevel KAs that are now applicable. (The previous belief about applicable
object-level KAs is removed from the database and so, in a sense, is forgotten. However, it
is captured in the variable bindings of the invoked metalevel KAs.)

As PRS places no restrictions upon the invocation conditions of metalevel K As, it is quite
possible that more than one metalevel KA will be invoked at this stage. If this happens, we
will now be left with the problem of deciding which of these metalevel KAs to invoke. There
are a number of possible solutions to this problem. One would be simply to select one of
the metalevel KAs at random, on the assumption that all are equally good at making the
decision about which object-level KAs should be invoked. Another alternative would be to
preassign priorities to the metalevel KAs and to invoke the one with the highest priority.
However, in keeping with our aim of providing maximum flexibility, the solution we chose
to adopt is to allow further metalevel KAs to operate on these lower-level metaKAs in the
same way that the lower-level metaKAs operated on the object-level KAs.

The process of invoking metalevel KAs is thus continued until no further KAs are
triggered.3 At that point, there may still be a set of applicable KAs from which to choose.
It is then, and only then (i.e., only after failing to find any more applicable metalevel KAs),
that we select one of these KAs at random.

Thus it is seen that, when more than one KA is applicable, and in the absence of any
information about what is best to do, the system interpreter defaults to selecting one of
these KAs at random. With no metalevel KAs, the system would thus randomly select
one of the applicable object-level KAs. However, one usually provides metalevel KAs to
help make an informed choice about the object level KAs. The applicable metalevel KAs
themselves are subject to the same default action (i.e., one will be randomly selected) unless
there are yet other metalevel KAs available to make a choice among them. In the end, at
some level in the meta-hierarchy, the default action will be taken (of course, there may, at
that level, be only one KA to choose).

Once selected, the chosen KAs must be inserted into the intention structure. If a selected
KA arose due to an ezternal goal or a fact, it will be inserted into the intention structure
as a new intention at the root of the structure. For example, this will be the case for
any metaleve]l KA that is invoked to decide among some set of applicable lower-level KAs.
Otherwise, the KA instance must have arisen as a result of some subgoal of some existing
intention, and will be “grown” (i.e., attached) as a subKA of that intention.

Currently, it is left to the user to ensure that the triggering of higher and higher levels of metaKAs
terminates in a bounded time. This is not difficult for the user to achieve. For example, one could assign
each metalevel KA to one of a finite set of fixed levels (types), and enforce the condition that KAs only
operate on others at the level below them in this finite hierarchy.
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(*FACT (SOAK $X)) @
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¢ (INTEND (SELEC
(! INTEND (SELECR-RANDOMLY $X)}} TY-BEFOME $S SR)
PROPEATIES:
NIL

Figure 3.3: A Metalevel KA

3.8 Manipulating Intentions — Metalevel KAs

The only other way to establish intentions is by invoking special metalevel KAs. These

provide a variety of options for inserting KAs into the intention structure.

There are four different ways in which an intention can be inserted into the intention

structure:

1. As a subKA of the current intention.

2. As a new intention at the root of the intention structure; i.e., prior to every other

intention, including the current intention if it has not finished execution.

3. As a new intention that has precedence over some set of existing intentions.

4. As a new intention that will be initiated only after some set of existing intentions have

been executed.

For example, consider the metalevel KA selector-2 in Figure 3.3. The goals

(!(intend ...)) and (!'(intend-all-safety-before ...)) are satisfied by metalevel
KAs that eventually establish intentions, each in its own way. In particular, the KA that

responds to the first goal inserts the KA instance directly after the current intention, whereas
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the KA that responds to the second goal gives those object-level KAs that have the property
of being “safety handlers” priority over those that are not.

To construct sophisticated metalevel KAs, it is usually necessary to provide additional
information about K As - for example, which are “safety handlers” or which are fact invoked
(see Figure 3.3). As mentioned previously, these properties can be stored in the system
database or, more conveniently, directly represented in the appropriate slots of the KA

structures.

Finally, it is important to be careful in the use of metalevel KAs. In particular, it
is sometimes quite difficult to foresee when the invocation condition of a metalevel KA
will become true. For example, consider the following activation condition, where soak

represents the set of KAs that are currently applicable:

(and (*fact (socak $x))
(#fact (equal 1 (length $x))))

This condition will be true whenever there is exactly one applicable KA (i.e., the set of
applicable KAs, $X, contains only one member). A KA with such an invocation condition
will possibly loop on itself indefinitely! This is because the KA will repeatedly become the
single applicable KA, thus reactivating itself.

The initiating events for some of the more important metalevel KAs are listed below.
Some of these KAs are used to create new intentions, others to modify the intention structure
itself, and yet others to modify the status of exisiting intentions.

Intend the KA instance $x:
Initiating Event: (*goal (!(intend $x)))

Intend all KA instances in the set $x, but give priority to “safety handlers”:
Initiating Event: (*goal (!(intend-all-safety-before $x)))

Make the current intention sleep for $t seconds:
Initiating Event: (*goal (!(sleep $t)))

Awake a sleeping intention:
Initiating Event: (and (*fact (wake-up $x)) (*fact (> (length $x) 0)))

Wait until the condition $c is true (the current intention is automatically put to sleep):
Initiating Event: (*goal (!(wait-until $c)))

3.9 Commitment to Intentions

PRS commits to its intentions. That is, unless some particular metalevel KA intervenes,
PRS will perform its means-ends reasoning and other planning in the contezt of its ezisting
intentions. For example, consider that PRS has adopted the intention of achieving a goal ¢
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by accomplishing the subgoals ¢;, g2, and g3, in that order. In the process of determining
how to accomplish these subgoals, the system will not reconsider other means of achieving
g. That is, it is committed to achieving g by doing g1, g2, and g3, even if circumstances have
so changed that there is now a better way to achieve g than the one chosen. The gain here
is in reducing decision time — in highly dynamic domains it is not possible to continually
reassess one’s plans of action. What makes the approach workable is that the basis upon
which one chooses a particular plan of action is more often correct than not.

Of course, the system is not committed to its intentions forever. For example, as dis-
cussed in Section 3.3, if PRS determines that it cannot achieve g by doing g1, g2, and g3,
it will drop that plan and look for some other means of achieving g. Alternatively, it may
remember the basis for choosing one plan over another, and utilize appropriate metalevel
K As to modify its intentions if support for that decision is subsequently found to be lacking.

It is not only in means-ends reasoning that PRS’s commitment to its existing intentions
is important. For example, in tackling some new task, it is often desirable that the means
or time chosen for accomplishing that task take account of one’s existing intentions towards
the fulfillment of other tasks. In the space-shuttle application, this happens, for example,
when the PRS instance INTERFACE receives a request for a pressure reading when it is in the
process of evaluating the status of a suspected faulty transducer. In this case, INTERFACE
will either defer or suspend attention to that request (possibly advising the requester) until
it has completed its evaluation of the transducer.

3.10 Supporting Goals and Beliefs

Some embedded reasoning systems are designed so that any given course of action is termi-
nated whenever the beliefs or goals that brought about that action cease to be true. In this
section, we shall consider this approach and how it compares to the one adopted in PRS.

Suppose that a certain alarm sounds, which in turn invokes some procedure to rectify the
fault. In some cases, the alarm will only be turned off when the problem is rectified. Thus,
it appears sensible that, should ever the alarm cease to sound, any procedure aimed toward
that end be terminated (but more about this below). On the other hand, there are many
cases where the ceasing of an alarm does not mean that the corresponding fault has been
fixed: the alarm may only sound for a fixed interval of time, or it may be deliberately turned
off to relieve the operator of the annoying noise. Thus, it is clearly bad policy to always
terminate a procedure simply on the grounds that the beliefs that caused its activation no
longer hold. Of course, if the inititiating belief is that the alarm sounded at a particular
time, and this belief is found to be false, it is usually sensible not to proceed any further.

Should the goals that constitute the purpose of some course of action cease to exist, the
rationale for continuing with the action disappears also. However, this need not mean that
one should simply cease doing what one was doing and get on with other activities. Indeed,
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in most cases one would need to “clean up” after the action, and in some cases one may
even desire to see things through to the end (as, for example, when one has fired the jets

to force reentry of the shuttle).

Thus, depending on circumstances, one has to reason carefully about the early termi-
nation of procedures, even when there is due cause for termination. PRS offers no special
techniques for handling these problems, but instead provides the hooks by which such rea-

soning can be performed at the appropriate time.

PRS will always recognize goal failures. Without any meta-KKAs to respond to such
failures, the system will simply try some other procedure to achieve the failed goal, eventu-
ally terminating once all avenues of attack have been explored. On the other hand, should
one wish some special action to occur on goal failure, it is straightforward to construct

appropriate metalevel KAs to perform the necessary corrective actions.

PRS currently has no notion of supporting beliefs for given courses of action. Thus, if
it is desired that a certain procedure be terminated should some belief be no longer held, a
special KA must be set up to look for that condition during the execution of the procedure.
While this is not difficult to do, it would be useful to provide generic mechanisms to assist

in this task. We plan to address this and related issues in our future work on PRS.

3.11 Guaranteed Reactivity

Definitions of real-time systems revolve around the notion of response time. For example,
Marsh and Greenwood {11] define a real-time system as one that is “ predictably fast enough
for use by the process being serviced” and O’Reilly and Cromarty [12] require that “there
is a strict time limit by which the system must have produced a response, regardless of the
algorithm employed.” This measure is most important in real-time applications; if events
are not handled in a timely fashion, the operation can go out of control. Amazingly, few of
the existing real-time Al systems are guaranteed to respond within a bounded interval of

time [10].

Response time is the time the system takes to recognize and respond to an external
event. Thus, a bound on reaction time (that is, the ability of a system to recognize or
notice changes in its environment) is a prerequisite for providing a bound on response time.
PRS has been designed to operate under a well-defined measure of reactivity. Because the
interpreter continuously attempts to match KAs with any newly acquired beliefs or goals,

the system is able to notice newly applicable KAs after every primitive action it takes.

To estimate the bound on reaction time, let p be an upper bound on the execution
times of the primitive actions that the system is capable of performing. Let’s also assume

that » is an upper bound on the number of events that can occur in unit time, and that
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the PRS interpreter takes at most time ¢ to select the set of KAs applicable to each event

occurrence.“

Thus, the maximum reactivity delay, AR, is given by

Ap=pt+yxt

where 7 is the maximum number of events that can occur during the reaction interval.
We have

y=ApXxXn

and thus we obtain

Ap = p/(1 - nt)

where we assume that ¢ < 1/n.

This means that, provided the number of events that occur in unit time is less than
1/t, PRS will notice every event that occurs [that is capable of triggering some KA] and is
guaranteed to do so within a time interval Ag. In the current implementation, the values
of p and ¢ are less than 0.1 seconds, giving a reactivity delay of at most 0.2 second for an

event rate of 5 events per second.

Because metalevel procedures are treated just like any other, they too are subject to
being interrupted after every primitive metalevel action they take. Thus, reactivity is guar-
anteed even when the system is choosing between alternative courses of action or performing

deductions of arbitrary complexity.

Having reacted to some event, it is necessary for the system to respond to this event
by performing some appropriate action. As the system can be performing other tasks at
the time the critical event is observed, a choice has to be made concerning the possible
termination or suspension of those tasks while the critical event is handled. Furthermore, if
there are a number of different ways in which the event can be handled, it is also necessary

to choose among those alternatives.

Such choices can be made by appropriate metalevel KAs. However, in general, these
decision procedures may take an unbounded amount of time to reach a decision. There are
two possible ways to overcome this problem. One is to require that all decision procedures
complete in a bounded time. In many domains, this provides adequate decision-making

capability and yields a bound on response time.

Alternatively, one could construct a special metalevel KA to act as a task scheduler.
This KA would have the capability to preempt all executing decision tasks (and any other
tasks for that matter) within a bounded time and begin execution of an event handler. It

could utilize whatever information was available (such as any incremental decisions made in

4As selection of KAs does not involve any general deduction beyond unification and evaluation of a

boolean expression, an upper bound does indeed exist.
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narrowing down the range of possibilities) to select the most appropriate event handler and
the manner in which to suspend or terminate other tasks. It could also take into account
the different constraints on response time that may exist in different situations. The only

requirement is that this KA have a guaranteed upper bound on execution time.

In summary, PRS is guaranteed to react to critical events in a bounded time interval.
With appropriate metalevel KAs, it is also possible to guarantee a bound on response time.
However, the question remains as to what algorithms (KAs) are well suited for decision-
making in bounded time. Surprisingly, it is only recently that researchers in AI have begun
to consider this problem [2, 4]. We propose to address this issue more fully in our future

research.

3.12 Variable Usage

The design of the PRS system has attempted to stress the use of logical variables, similar
to the way variables are used in Prolog. Within a KA, such variables can never be rebound.
However, it is sometimes convenient to use variables with other kinds of semantics, in
particular, to use variables that have a semantics similar to what is found in standard

programming languages.

There are three kinds of variables in the PRS system, all of whose semantics can be
mapped onto a standard logical variable semantics, but whose usage differs. Global variables
are just like logical variables in the classic sense. Local variables are like global variables,
but have a limited extent or lifetime. Program variables function much like normal variables

in standard programming languages.

Global variables are prefixed by $ and can have only one binding during the lifetime of
a particular KA instance.’> Note that each instantiation of a KA is associated with its own
global variables. Thus, the global variables in each recursive call of the same KA will be

distinct.

Local variables are prefixed by %; they behave like global variables, except that their
binding is meaningful only on a single arc. In other words, on each arc, the appearance of
a % variable is similar to the creation of a fresh new global variable. The binding of a ¥
variable will not carry over from one arc to the next. However, if multiple goals are invoked

on the same arc, the same variable and binding will be used for all of them.

Program variables are prefixed by @; they can be rebound from arc to arc and retain
their value between arcs. Whether or not the value of an @ variable is rebound or not will

depend upon context. A goal of form (! (= @x @y)) will, by default, bind the value of @x

SOf course, as in Prolog, many different bindings may be attempted in trying to satisfy some goal
expression that appears in the KA. However, once a binding has been found that successfully achieves that

goal, that binding is fixed for the lifetime of the KA instance.
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to be equal to the current value of @y, if it has one. If @y was not bound and @x was bound
when this goal occurred, @y would be bound to the value of @x. If both were unbound,
they would nevertheless be constrained to be equal, and if one achieved a binding later, the
other would be bound to that binding as well. A goal of form (?(= @x Qy)) simply tests
to see if the bindings of the two variables are equal.

Clearly, both global and local variables are logical variables in the classic sense — they
cannot be rebound. In order to handle the semantics of @ variables consistently within this
logical-variable framework, the binding of program variables may be viewed as a particular
property of an associated global variable (intutively, the contents of the denoted ob ject).
Whereas global variables can be bound only once, it is acceptable for the value of its contents
(a function on the variable) to change. For example, one could imagine a global variable as
a box. Each global variable is a specific box and can never be rebound to another box, but
different objects may be placed in the box at different points in time.

Note that variables are assumed to bind to so-called rigid designators - that is, the
variable is assumed to denote the same object throughout the KA in which it appears.
Thus, any functional expressions (which could be bound to such variables) should also
be rigid designators. In such cases, one should not, for example, use a function such as
(the-block-on-top-of $x) as the denotation of this expression could well change during
the execution of a KA. This restriction does not apply, however, to evaluable functions, as

they and their arguments are immediately evaluated by the system.

3.13 Planning or Not?

There has always been some confusion in the literature about the notion of planning, espe-

cially with respect to the kind of practical reasoning that PRS performs.

In the AI literature, planning is viewed as the generation of a sequence of actions to
achieve some given goal. The classical approach to this problem is to simulate the effects of
performing the actions so as to ensure that their execution does indeed achieve the required
goal. All this planning is done, in most cases, prior to performing any physical action in
the actual world.

It is quite straightforward to run PRS in this way: the primitive actions performed by the
system are decoupled from the actual world, and the KAs simply become the “operators”
of classical planning systems. Thus, the system simulates execution of the KAs, and its
database reflects beliefs about the state of the world as it would be had those KAs actually
been executed. As the system explores all possible sequences of activity that could possibly
lead to the goal condition being achieved, it will find a plan if one exists.® In this sense,
PRS is capable of planning in the classical tradition, albeit not very efficiently.

%In fact, this depends on how the metalevel KAs are written. In particular, one has to ensure that all
possible interleavings of any conjunctive goals are explored.
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The kind of planning discussed above takes place prior to performing any actions in the
actual world. However, it is also possible to form plans during the course of performing some
task. Assume one has some goal, g, and a variety of ways to achleve that goal. Let’s say
that there are two options: achieve g; followed by go; or achieve f, followed by f2. Now one
could choose arbitrarily between these options, or one could engage in some level of planning
to determine which was the best course of action in the given circumstances. This kind of
planning may involve simulating the possible outcomes of each approach by elaborating
these options as done in classical planning. However, one could alternatively select from a
great variety of other techniques. For example, the choice could be based on the expected
time to complete the actions, or the likelihood of success of the plans as gained through
experience. In any case, simply choosing which course of action to pursue, no matter how
one does it, constitutes forming a plan to achieve the goal g. Having chosen one of these
courses of action (or, indeed, none’ or both!®), one repeats the process. For example, if the
course involving g, and g, were chosen, and one had various ways of achieving g;, then it

would be necessary to plan how best to achieve that subgoal, and so on.

This is exactly the way PRS operates. The method of choosing between alternative
courses of action is embedded in the metalevel KAs of the system ‘and thus, in essence, the
particular approach to forming plans is not hard-wired into the system. To the extent that
the choice is made arbitrarily, one may wish to avoid calling this process “planning.” But
where it is based on any information at all, no matter how meager, the determination of an

appropriate course of action is indeed planning.

In the RCS example discussed in Chapter 4, the system decides between different courses
of action depending on how the KA was invoked and what sort of priority it has. This is
clearly quite a weak form of planning, and more complex meta-KAs - taking time availabil-

ity, costs, and benefits into account - would improve system reliability.

Of course, it is important to determine exactly what algorithms (metalevel KAs) are
needed for effective planning. The RCS problem, as we said above, uses a very simple form
of planning, which, in itself, is probably not of much interest. However, what is of interest
is just how weak the planning component can be when we have a wealth of experience (a

rich set of object-level KAs) to assist us.

3.14 Additional Features of PRS

This report is concerned with the design of real-time reasoning systems, and not primarily

with features of the particular implementation of PRS at SRI International. However, it

"Such as when both approaches appear unlikely to achieve the goal.
8Such as forming the plan to court both Jane and Mary in parailel, in the hope that one of them will

eventually marry you.
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is important to mention some of the major implementation features that facilitate creating

and modifying system databases and KA libraries.

3.14.1 The KA Editor

Each PRS system must include a set of KAs supplied by the user. Normally, KA descriptions
are stored within a KA library. Each KA description includes a network of labeled nodes
and arcs, as well as an invocation condition that describes the situations in which that KA is
applicable and useful. The user of the PRS system inputs all of this procedural information
using a KA Editor, which is based on SRI’s proprietary Grasper-II system. This user
interface is fairly straightforward and guides the user through the creation or modification

of selected K As via questions and menus.

To create a new KA, the user is prompted with a series of questions. The user will be
asked to enter the invocation condition for this KA and various other information. After
answering these questions, the user can begin creating the actual KA body (network) using
the appropriate menu items. These allow the user to create and name nodes and arcs, to
specify their shape, and to perform various other graphical operations on the KA. Once

created, KAs can be easily modified using the same menu-driven system.

3.14.2 The Structure Editor

When appliéd to certain domains, knowledge-based inference systems must make use of large
amounts of information relating to the physical structure of the real world. In these cases,
encoding this information as predicates in a database is a critical and very time-consuming
operation. The way this is normally done is by taking each physical object in the domain
and writing down facts about its attributes (i.e., size, weight), class relationships (A is a
brick), and relations to other objects in the domain (A is connected to B, A is inside C, etc.).
This operation becomes very inefficient as the number of objects in the domain becomes
large. The task of building the database can take a very long time, and any modification
of the structure of an object requires an expensive search through the database to change
all the facts that involve that object.

To overcome this problem, PRS employs a Structure Editor that allows the representa-
tion of PRS’s predicate calculus database about structure in an interactive graphical format.
As with the KA Editor, the Structure Editor is built on top of the Grasper-II system. In
addition to making it easier to create and update the database, the Structure Editor also
incorporates features of object-oriented programming (like classes and inheritance) that fa-
cilitate the creation of large and conceptually complex systems of objects. The Structure
Editor can also be used to alter structure dynamically as the PRS system runs, and thus
can display visually certain the current status of the application system.
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3.14.3 The Natural Language Interface

SRI International’s natural-language system, Candide, has been used to facilitate the
building of KAs. Using Candide, an engineer or mission controller can readily create KAs
through a mixed interaction involving both graphics and natural language. Candide trans-
lates English expressions into the logical form used by PRS, and operates in conjunction
with the KA Editor described above.

Thus, using Candide, the user can specify complex objects, conditions, goals, and beliefs
in English, their temporal and causal relations graphically. Candide also facilitates later
modifications to the network via a natural-language dialog. Candide thus eliminates the
need for those who design and maintain a PRS knowledge base to be proficient in the
specialized logical language used by PRS. In addition, the use of English can greatly simplify
what would otherwise be highly complex formal statements. For example, the entire portion
of the procedural network that is highlighted in Figure 3.4 can be specified with the single
query “Is the pressure in the affected manifold greater than 130?”

Significantly, Candide is not just a single-utterance interpretation system — it includes
capabilities for processing the types of extended natural-language dialogues that are neces-
sary in complex knowledge acquisition tasks. As one example, Candide tracks the discourse
along each path of the network in order to perform sophisticated reference resolution. An
engineer can specify an invocation constraint that “A jet is faulty.” When the engineer later
specifies that there should be a test for high usage in the RCS, Candide will determine that
the intended RCS module is the one containing the faulty jet. Techniques for reasoning
about the domain and the discourse history enable Candide to handle a range of important
natural-language phenomena, including definite and indefinite reference, anaphora, quanti-
fier scoping, resolution of nominal compounds, resolution of syntactic and lexical ambiguity,

and metonymy.
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Chapter 4

The RCS Application

The sytem chosen for experimentation with PRS is the reaction control system (RCS) of
the space shuttle. The system structure is depicted in the schematic of Figure 4.1. One
of the aims of our research is to automate the malfunction procedures for this subsystem.
Sample malfunction procedures are presented in Figure 4.2 below, and in Chapter 2, Figure
2.1.

The RCS provides propulsive forces from a collection of jet thrusters to control the
attitude and other motions of the space shuttle. Each jet is permanently fixed to fire in
a particular direction. There are three RCS modules, two aft and one forward. FEach
module contains a collection of primary and vernier jets, a fuel tank, an oxidizer tank,
and two helium tanks, along with associated feedlines, manifolds, and other supporting
equipment. Propellant flow, both fuel and oxidizer, is normally maintained by pressurizing
the propellant tanks with helium.

The helium supply is fed to its associated propellant tank through two redundant lines,
designated A and B. The pressure in the helium tanks is normally about 3000 psi; this is
reduced to about 245 psi by regulators that are situated between each helium tank and
its corresponding propellant tank. A number of pressure and temperature transducers are
attached at various parts of the system to allow monitoring.

Each RCS module receives all commands (both manual and automatic) via the space
shuttle flight computer software. This software resides on five general purpose computers
(GPCs). Up to four of these computers contain redundant sets of the Primary Avionics
Software System (PASS) and the fifth contains the software for the Backup Flight System
(BFS). All of the GPCs can provide information to the crew by means of CRT displays.

The various valves in an RCS module are controlled using a control panel of switches
and talkbacks (Figure 4.3). Each switch moves associated valves in both the fuel subsystem
and the oxidizer subsystem. Switches can be set to OPEN, CLOSE, or GPC, the last
providing the GPCs with control of the valve position. The talkbacks provide feedback on
valve position, and normally correspond with the switch position, except when the switch
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is in GPC. The talkbacks may not correspond if a valve has jammed or if the control or
feedback circuit is faulty. If the valves in both the fuel and oxidizer subsystems do not move
in unison (because of some fault), the talkback displays a barberpole.

It is important to note that, in the process of changing switch position, there will be a
short time (about 2 seconds) when the positions of the talkback and the switch will differ
from one another. This is because it takes this amount of time for the actual valve to
change its position. Furthermore, during this transition, the talkback will also pass through
the barberpole position. Thus, a mismatched talkback and switch position or a barberpole
reading do not always indicate a system fault.

4.1 System Configuration

As mentioned earlier, two instances of PRS were set up to handle this application. One,
called INTERFACE, handles most of the low level transducer readings, effector control and
feedback, and checking for faulty transducers and effectors. The other, called somewhat
misleadingly RCS, contains most of the high-level malfunction procedures, much as they
appear in the malfunction handling manuals for the shuttle.

To test the system, a simulator for the actual RCS was constructed. During opera-
tion, the simulator sends transducer readings and feedback from various effectors (primar-
ily valves) to INTERFACE and communicates alarm messages as they appear on the shuttle
system displays to RCS. The simulator, in turn, responds appropriately to changes in valve
switch positions as requested by INTERFACE. The simulator can be set to model a variety of
fault conditions, including misreading transducers, stuck valves, system leaks, and regulator
failures.

The complete system configuration is shown in Figure 4.4. Each of these is described in
the following sections.

4.1.1 The Simulator

The simulator sends messages to INTERFACE and RCS about alarms, transducer readings,
and talkback positions. In turn, it responds to commands from these systems to alter switch
settings and reset alarms.

The simulator uses much the same predicates as used by INTERFACE for defining the
configuration of the RCS and the various parameter values. A few additional predicates are
used to fully specify the system and the status of the various system components.

Simulator Commands

The simulator can be set to simulate various conditions in the RCS. The following two
commands simulate different modes of operation:
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(OPENJETS) simulates system behavior when all 5 jets are firing.
(CLOSEJETS) simulates system behavior when none of the Jets are using fuel or oxidizer.

The following interactive commands describe faults; these impinge on all future compu-

tations until removed.

(STATUS valve value) sets the status of valve. If BAD this particular valve will no longer
change position; GOOD is normal.

(BROKEN-SWITCH valve) simulates a broken switch; the switch associated with valve no
longer affects the position and talkback of its associated valves.

(BROKEN-TALKBACK valve) simulates a failure in the feedback of valve position; the talk-
back associated with this valve will remain stuck on its current value.

(BROKEN-XDCR xdcr value) simulates a broken transducer; the value of xdcr remains set
to value; if value is not given then the value stays at its last value; if value is T the
previous fault removed.

(LEAK xdcr message) simulates a leak in the tank, leg, or manifold associated with the
transducer xdcr; it also triggers an alarm with value message.

(HELIUM-BLOCKAGE xdcr message) simulates a blockage in the helium pressure supply sys-
tem; it triggers an alarm and does nothing else.

(BROKEN-REGULATOR regulator) simulates a broken regulator.

Transducer readings and valve and talkback positions can be set to arbitrary values by
the following commands:

(VALUE xdcr n) sets the value of transducer xdcr to n and propagates the value.
(POSITION valve value) sets the position of valve to value, even if the valve switch is
broken; talkback goes permanently to BP (barberpole) if the position of two valves controlled
by the same switch differ.

(POSITION talkback value) sets talkback to value.

Of course, all commands described here are used for simulating different states of the
RCS, and are beyond the control of both PRS instantiations and the astronaut or mission
controller interacting with the system.

Simulator Input

The only input that the simulator can receive from either PRS instantiation is a command
to change the position of a valve switch. This is achieved by the following command:

(POSITION switch value) sets switch to value, together with all associated valves and
talkbacks.

In this application, only INTERFACE has the capability to command the simulator to
change the position of a valve switch.

Each time the switch position is changed, the associated talkback goes through to that
position in a time interval given by the variable *BARBERPOLE-INTERVAL*. This is normally
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set to about 2-4 seconds. While mobving from the old position to the new position, the
talkback is set to the barberpole setting. The positions of the corresponding valves are
changed when the talkback reaches to its final position. If either the valve or talkback is
faulty, the readings are fixed as described above.

Simulator Output

The simulator will send messages to INTERFACE whenever transducer readings or valve
talkback positions change. This is done with the messages (VALUE xdcr integer) and
(POSITION talkback pos), respectively. The value of pos can be either OP (open), CL
(closed), or BP (barberpole). Alarms are fired when given upper and lower limits are crossed,
or certain leaks or blockages occur. All alarms are sent to RCS. Note that while the simulator
holds information about actual pressures and valve positions, neither INTERFACE nor RCS
are informed of these facts — they are simply informed of transducer readings and talkback

positions, either of which could be in error.

Pressure Calculations

In this section we briefly describe the method for calculating pressures in the simulator.
Each leak or firing jet is processed individually, incrementally changing all pressures in
regions that are accessible through valves to the given leak or jet. Only after all these are
processed does the simulator check final values for changes that must be reported.

Processing is done up to the root of the pressurization system by following ancestor links
through open valves, then visiting all descendants of the root accessible via open valves, and
updating their values on the way. The rates of fuel and oxidizer loss during jet firing, regula-
tor pressure loss, and leakage are specified by *FIRE-RATE*, *REGULATOR-LEAK-RATE#*, and
#LEAK-RATE#, respectively. If the root is the helium tank, then the helium tank continues
to pressurize the system despite the leak. We consider this case below. If the connection to
a helium tank is newly opened, then all regions connected to it must allow the pressure to
jump immediately to either +REGULATOR-PRESSURE#* or the helium tank pressure, whichever
is the less. If the pressure in these regions is already higher than either of these readings,

then it remains unchanged.

We describe now how we approximate the loss of pressure in the system when the helium
tank is pressurizing the leaking component. Leaks cause all regions accessible to them to lose
pressure. When the helium tank is accessible to the leak, it continues to try to pressurize
the system. We approximate this by having pressures decrease at some less-than-nominal
rate, as specified by *HELIUM-LEAK-FACTOR*. We assume that the helium tank also loses
pressure at this rate. Jet firings do not cause any loss of pressure when the system is
pressurized by a helium tank.
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When there is a leak on a helium tank, its pressure falls without affecting anything else
until it gets down to the level of the fuel or oxidizer tank to which it is connected. At that

point, the loss in pressure leak propagates to the rest of the system through all open valves.

Parameters and their Settings for the RCS Example

The values of variables used by the simulator are as follows:

*LEAK-RATE#* (-0.25): Rate at which pressure drops when a tank or leg leaks (psi/sec)
*FIRE-RATE* (-0.1): Rate at which each jet uses pressure (psi/sec)
+REGULATOR-LEAK-RATE* (1.0): Rate at which pressure increases if regulator fails (psi/sec)

*P-THRESHOLD* (1.0): Minimum value of pressure increments (psi)
*REGULATOR-PRESSURE* (245.0): Pressure maintained by regulator (psi)
*TIME-DILATION* (1.0): Number of simulated seconds per actual second
*BARBERPOLE-INTERVAL* (240.0): Time that talkback stays in barberpole, in sixtieths of
a second

+CYCLE-WAIT-TIME* (300.0): Time to wait at end of each cycle in sixtieths of a second
*HELIUM-LEAK-FACTOR* (1.0): Relative leak rate of helium tank compared to other system
leaks.

4.1.2 The RCS

The top-level PRS instantiation, RCS, contains most of the malfunction handling procedures
as they appear in the operational manuals for the space shuttle. RCS takes an abstract view
of the domain — it deals in pressures and valve positions, and does not know about trans-
ducers, switches, or talkbacks. For example, whenever RCS needs to know the pressure in a
particular part of the system, it requests this information from INTERFACE, which is expected
to deduce the pressure from its knowledge of transducer readings and transducer status.
Similarly, RCS will simply request that INTERFACE move a valve to a certain position, and is
not concerned how this is achieved. In this way, RCS can represent the malfunction handling
procedures in a clean and easily understood way, without encumbering the procedures with

various cross-checks and other details.

4.1.3 The INTERFACE

The PRS instantiation INTERFACE handles all information concerning transducer readings,
valve switches, and valve talkbacks. It handles requests from RCS for information on the
pressures in various parts of the system and for rates of change of these values. This
can require examination of a variety of transducers, as readings depend on the status of
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individual transducers, their location relative to the region whose pressure is to be measured,
and the connectivity of the system via open valves.

INTERFACE also handles requests from RCS to change the position of the valves in the
RCS. This involves asking the astronaut to change switch positions, and waiting for confir-
mation from the talkback.

While doing these tasks, INTERFACE is continually checking for failures in any of the
transducers or valve assemblies. When it notices such failures, it will notify the astronaut
or mission controller, and appropriately modify its procedures for determining pressures or
closing valves. It will also consider the consequences of any failures, such as are prescribed
in various flight rules for the shuttle.

4.2 Sample Interactions

In this section, we briefly examine a few different scenarios.

4.2.1 Changing Valve Position

Let’s consider the situation where INTERFACE gets a request from RCS to close some valve,
say frcs-ox-tk-isol-12-valve. RCS achieves this by sending INTERFACE the message
(request RCS (!(position frcs-ox-tk-isol-12-valve cl))). Responding to this re-
quest, INTERFACE calls a KA that, in turn, asks the astronaut to place the switch corre-
sponding to this valve in the closed position (see Figure 4.5). Once the astronaut has done
this, INTERFACE will advise RCS that the valve has indeed been closed (Figure 4.5).

However, that is not the end of the story. INTERFACE will also notice that, just after
the switch is moved to the closed position, there is a mismatch with the talkback indica-
tor (which will still be showing open, due to the normal delay in the valve reaching its
closed position). Furthermore, a fraction of a second later, the talkback will move into the
barberpole position, another indication that things could be wrong with the valve.

Both these events initiate KAs that seek to confirm that the talkback moves to its correct
position within a reasonable time (Figure 4.6). Each of these KAs or, more accurately, the
intentions formed by these KAs, immediately suspends itself (using the “wait-until” goal)
while awaiting a specified condition to become true.!

For example, the KA concerned with a possible switch dilemma will suspend itself until
either the positions of both the switch and the talkback agree, or 20 seconds elapses. When
either of these conditions become true, the KA (strictly, the intention) will awaken and

'The arguments to the wait-until goal are excessively cumbersome — for some important technical
reasons — but can probably still be understood. Later versions of the system will allow a syntactically
more convenient way of expressing the same information.
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Figure 4.5: INTERFACE KAs for Closing a Valve
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proceed with the next step. If the switch and talkback still disagree, it will notify the
astronaut or mission controller of an error. Otherwise, it fails, and simply disappears from

the intention structure.

Notice that the intentions to respond to the request from RCS, to monitor for a switch
dilemma, and to check the barberpole reading are all established as intentions at some stage
during this process. Various metalevel KAs must therefore be called, not only to establish
these intentions, but to decide which of the active ones to work on next.

A typical state of the intention structure is shown in Figure 4.7. It shows a number
of intentions in the system INTERFACE, ordered for execution as indicated by the arrows.
The intention labeled soak is a metalevel KA. The other intentions include two that are
checking potential switch problems and one that is responding to a request from RCS. The
metalevel intention, in this case, is the one currently executing. Although not clear from
the figure, it is trying to choose among a number of KAs that are applicable in the present
situation.

4.2.2 Handling Faulty Transducers

In this case, we will assume that transducer frcs-ox-tk-out-p-xdcr fails and remains
jammed at a reading of 170 psi. This causes a number of things to happen. First, it causes
a low-pressure alarm to be activated which will be noticed by the PRS instantiation RCS.
RCS will immediately respond to the alarm by initiating execution of the KA cw-rcs-alarm.
This KA will, in turn, request a pressure reading from INTERFACE to ensure that the alarm
is valid.

While this is happening, INTERFACE itself has noticed that the two transducers on the
oxidizer tank do not agree with one another (in this case, the other transducer is reading
the nominal value of 245 psi). This invokes the KA xdcr-bad, which attempts to determine
which of the two transducers is faulty (Figure 4.8). It does this by first waiting a few
seconds to ensure that the mismatch is not simply a transient, and then testing to see if one
of the readings is outside normal limits. If so, it assumes this is the faulty transducer (this
is indeed the procedure used by astronauts and mission controllers). Other KAs, capable of

more sophisticated acts, such as checking the values of downstream or upstream transducers
as well, could be added to the KA library if desired.

Notice what could happen here if one is not careful. Having more than one thing to do,
INTERFACE could decide to service the request for a pressure reading for the suspect tank.
If it does so, it will simply average the values of the two transducer readings (yielding 207
psi) and advise RCS accordingly. Clearly, this is not what we want to happen — any suspect
parameter readings should be attended to before servicing requests that depend on them.

In the examples we have considered, it has been sufficient to handle such problems
with a relatively simple priority scheme. We first ascribe the property of being a so-called
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Figure 4.6: INTERFACE KAs for Monitoring Valve Position
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Figure 4.9: Typical Intention Structure for Faulty Transducer

safety handler to all those KAs that should be executed at the earliest possible time. Then
we design the metalevel KA that chooses between potentially applicable KAs to place all
safety handlers on the intention structure earlier in the ordering than other intentions. In
the example given above, the KA that detects the faulty transducer is a safety-handler, and
thus is executed prior to servicing the request from RCS. INTERFACE disregards the faulty
transducer reading when advising RCS of the pressure, and thus eventually RCS comes to
realize that the alarm was activated in error and that the pressure is within normal range.

Even with all this going on, other things are happening within the INTERFACE system.
For example, the fact that the transducer is determined to be bad, together with the fact
that it is the very transducer that informs the shuttle computers of overpressurization
problems, causes the invocation of another KA. In this case, the KA reflects a flight rule
that states that overpressurization protection is lost while this transducer is inoperative.

As before, metalevel KAs are invoked to determine which KAs to adopt as intentions
and how to order them on the intention structure. The state of the intention structure at
one stage during this process is shown in Figure 4.9.

4.2.3 Failed Regulator

It’s now time to consider the top-level PRS instantiation, RCS. The case we examine occurs
when the regulator on the feed line between the helium tank and its associated propellant
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tank fails. In this example, we will assume that the frcs-fu-he-tk-A-reg has failed.
We will focus only on RCS (INTERFACE is, of course, working away during this process as

discussed above).

The first thing that happens when the regulator fails is that pressures throughout the
fuel subsystem begin to rise. When they exceed the upper limit of 300 psi, certain alarms
are activated. This activates the KA cw-rcs-alarm, which attempts to confirm that the
system is indeed overpressurized.

(Note that this process is more complicated than it first appears. High transducer
readings can trigger an alarm which in turn activates the KA cw-rcs-high in the PRS
system RCS. The high transducer readings that gave rise to the caution-warning alarm will
also trigger KAs in the PRS system INTERFACE. These KAs will proceed to verify that the
corresponding transducers are not faulty; that is, that the reading of the transducers is
indeed accurate. While doing this (or after doing this) INTERFACE will get a request from
RCS to advise the latest pressure readings. If INTERFACE is in the process of checking the
transducers, it will defer answering this request until it has completed its evaluation of
transducer status. But eventually it will return to answering the request and, in the case
we are considering, advise that the pressure is indeed above 300 psi.)

On concluding that the system is overpressurized, another KA (cw-rcs-high) is acti-
vated and this, eventually, concludes that the A regulator has failed (see Figure 4.10). Note
that this KA establishes subgoals to close both the A valve and the B valve (there are cases
when both are open). For the A valve, this involves a request to INTERFACE as discussed
above. However, for the B valve, the system notices that the B valve is already closed.
Thus, its goal is directly achieved without the necessity to perform any action or request.

The concluding of this fact then activates another KA (tk-p-high) that opens the valve
to the alternate (B) regulator. Having opened the valve, it is desirable to then place it under
the control of the computer. However, this cannot be done until the pressure in the system
drops below 312 psi, as otherwise the computer will automatically shut the valve again.
Thus, the malfunction handling procedures specify that the astronaut should wait until
this condition is achieved before proceeding to place the valve switch in the GPC position.

RCS achieves this by asking INTERFACE to monitor the pressure and advise it when it
drops below 312 psi. While waiting for an answer, the KA tk-p-high is suspended (see
Figure 4.11).

When the pressure eventually drops below that threshold, the KA (intention) is awak-

ened, and execution continued. Thus, the valve switch is finally placed in the GPC position
and the overpressurization problem resolved.?

2Note the necessity to explicitly remove the fact regarding the response of RCS to the monitoring request.
This is necessary with the truth maintenance procedures used by the present system, but clearly needs
improvement.
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cw-rcs-high

STAAT

INVOCATION:
(*FACT (OVEAPARESSURIZED $TK 3P-SVS))

CONTEXT:
{AND (°FACT (TYPE PAOPELLANT-TANK $TK))

(°FACT (PAAT-OF SACS §P-5v8S)))
(7 (& (ASSOCIATED-REGULATOR $V $REG)
GOAL ACHIEVER?: (PART-OF $P-SYS $V)
T (POSITION $V OP)
(ALTEANATE SV $V1)))

EFFECTS:
NiL

PROPEATIES:

{ (POSITION $V CL)
((SAFETY-HANDLER T))

{t (POSITICN $V1 CL)

(=) (STATUS $REG FAIL)

Figure 4.10: The KA cw-rcs-high
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tk-p-high

INVOCATION:
(AND (®FACT (STATUS SAEG FAIL))
(“FACT (OVERPRESSUAIZED $TK $P-3YS)))

CONTEXT:

(AND (“FACT (ALTEANATE SREG SREGY))
(*FACT (ASSOCIATED-REGULATOA $V1 SREG 1))
(*FACT (SWITCH 3v 1 8S1)))

GOAL ACHIEVER?:
T

EFFECTS:
{~ (OVERPAESSUAIZED $TK $P-SYS))

PROPEATIES:
nNit

START

(! (POSITION $V1 OP))

S

{
(SEND-MESSAGE
INTERFACE
{REQUEST ACS
(! (MONITOR (PRESSURE-BELOW $TK
31290

-] il
~ LN

«
(WAIT-UNTIL
(ACHIEVED INTERFACE
(! (MONITOR (PRESSURE-BELOW $TK
Jr200n

(=>
(ACHIEVED INTERFACE
{ (MONITOR (PRESSURE-BELOW $TK
31200

(! (POSITION $81 GPC))

B“—H

~

!
(PRINT~-WARNING
(FORMAT NIL
*Overpressurization of ~A resoived®
$TKI))

Figure 4.11: The KA tk-p-high
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4.2.4 Isolating a System Leak

Let’s assume that there is a leak in the RCS. Usually, the leak will cause a pressure
drop in the system that will set of a caution-warning (cw) alarm. This will cause the
KA cw-rcs-prop-low to respond. This KA will first try to differentiate between a failed
regulator and a leak in the system. If it determines that the system has a leak, it will then
establish the goal to isolate that leak. This, in turn, triggers the KA rcs-leak-isol. This
KA first attempts to secure the system. This involves requesting that the astronauts close
all the valves in the leaking system.

(Again, the PRS sytem INTERACE will, throughout each process of closing a valve, check
that the valve has indeed closed and that the corresponding talkbacks are registering closed.
Notice also that the KA used to secure the RCS (rcs-secure) includes goals that apply
actions to sets of objects rather than single ones (see Section 3.4).)

As soon as the system has been secured, the system can identify the leaking section
by checking for decreasing pressure in each section of the RCS in turn (using the KA

rcs-leak-isol).
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Chapter 5

Conclusions

The system decribed above was implemented on a Symbolics 3600 LISP machine and has
been used to detect and recover from most of the possible malfunctions of the RCS, including
sensor faults, leaking components, and regulator and jet failures. This was accomplished by
using multiple communicating instantiations of PRS and a simulator for providing real-time
input to the system. The experiment provided a severe and positive test of the system’s
ability to coordinate various plans of action, modify intentions appropriately, and shift its
focus of attention. In addition, PRS met every criterion outlined by Laffey et al. [10]
for evaluating real-time reasoning systems: high performance, guaranteed response, tempo-
ral reasoning capabilities, support for asynchronous inputs, interrupt handling, continuous
operation, handling of noisy (possibly inaccurate) data, and shift of focus of attention.

The features of PRS that, we believe, contributed most to its success at this task are
(1) its partial planning strategy, (2) its reactivity, (3) its use of procedural knowledge, and
(4) its metalevel (reflective) capabilities. At any time, the plans the system is intending to
execute (i.e., the selected KAs) are both partial and hierarchical — that is, while certain
general goals have been decided upon, the specific means for achieving these ends have been
left open for future deliberation. By finding and executing relevant procedures only when
needed and only when sufficient information is available for making prudent decisions, the
system stands a better chance of achieving its goals under real-time constraints.

The wealth of procedural knowledge possessed by the system is also critical in allowing
the system to operate effectively in real-time and to perform a variety of very complex
tasks. In particular, the powerful control constructs that can be represented by KAs (such
as conditionals and loops) were essential to realizing the malfunction handling procedures
used for the shuttle, and allowed low-level system functions to be implemented in the same
formalism (i.e.,without resorting to LISP or some other programming language).

PRS also makes it possible to have a large number of diverse KAs available for achieving
a goal. Each may vary in its ability to accomplish a goal, as well as in its applicability in
particular situations. Thus, if there is insufficient information about a given situation
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to allow one KA to be used, another (perhaps less reliable) might be available instead.
Parallelism and reactivity also help in providing robustness. For example, if one PRS
instantiation were busy diagnosing some system fault, other instantiations could remain
active, monitoring environmental changes and keeping the spacecraft in a stable and safe
configuration.

The metalevel reasoning capabilities of PRS are particularly important in managing
the application of the various KAs in different situations. Such capabilities can be critical
in deciding how best to meet the real-time constraints of a domain. In particular, the
combination of a rich intention structure - supporting multiple active, suspended, and
conditional intentions — and the metalevel scheduling capabilities appear to be essential
components of complex real-time applications.

Because PRS exhibits behavioral properties similar to those of a rational agent and is
ascribed the psychological attitudes of belief, desire, and intention, the potential for a high
level of communication with astronauts and other users is greatly enhanced. The astronaut
can inquire of the system its current intentions, and determine the reasons for its adopting
those intentions. If desired, the astronaut could suggest different means for accomplishing
the same task; alternatively, he or she may question the truth of the beliefs upon which
the system has based its reasoning and can direct the system to examine the source of
these beliefs in greater detail. Of course, the system does not come close to manifesting the
behavioral complexity of real rational agents; nevertheless, it represents an important step
in building machines that can interact in a rational way with human users.

There are many issues that need further study. In particular, it is important to re-
examine the semantics of KAs to allow for external events to occur during their execution
and for other KAs to interrupt processing. The truth maintenance techniques used for
handling the database need further study and extension, and goals of maintenance must
be considered. It is necessary to examine more complex scheduling schemes and, finally, to

expand the application domain to handle fully and properly the malfunction procedures of
the RCS.
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Appendix A

The RCS Database

Electrical Buses

(type electrical-bus mmna-bus)
(type electrical-bus mmnb-bus)
(type electrical-bus mnc-bus)
(type electrical-bus fpci-bus)
(type electrical-bus acl-bus)
(type electrical-bus ac2-bus)
(type electrical-bus ac3-bus)
(type electrical-bus abi-bus)
(type electrical-bus ab2-bus)
(type electrical-bus ab3-bus)
(type electrical-bus bci-bus)
(type electrical-bus bc2-bus)
(type electrical-bus bc3-bus)
(type electrical-bus cal-bus)
(type electrical-bus ca2-bus)
(type electrical-bus ca3-bus)
(type electrical-bus flci-bus)
(type electrical-bus fmci-bus)
(type electrical-bus fpc2-bus)
(type electrical-bus flc2-bus)
(type electrical-bus fmc2-bus)
(type electrical-bus fpc3-bus)
(type electrical-bus f£lc3-bus)
(type electrical-bus fmc3-bus)

(negation-as-failure sub-bus)
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(sub-bus
(sub-bus
(sub-bus
(sub-bus
(sub-bus
(sub-bus
(sub-bus
(sub-bus
(sub-bus
(sub-bus
(sub-bus
(sub-bus

mna-bus fpci-bus)
fpci-bus flci-bus)
fpci-bus fmci-bus)
fpci-bus acl-bus)
mnb-bus fpc2-bus)
fpc2-bus flc2-bus)
fpc2-bus fmc2-bus)
fpc2-bus ac2-bus)
mnc-bus fpc3-bus)
fpc3-bus £lc3-bus)
fpc3-bus fmc3-bus)
fpc3-bus ac3-bus)

(functional status 1)

(status mna-bus good)

(status mnb-bus good)

(status mnc-bus good)

(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status
(status

acl-bus
ac2-bus
ac3-bus
abi-bus
ab2-bus
ab3-bus
bci-bus
bc2-bus
bc3-bus
cal-bus
ca2-bus
ca3-bus
fpcl-bus
flci-bus
fmci-bus
fpc2-bus
flc2-bus
fmc2-bus
fpc3-bus
flc3-bus
fmc3-bus

good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
good)
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Computer Buses

(type data-path mdm-ff1)
(type data-path mdm-£f£2)
(type data-path mdm-£f£3)
(type data-path mdm-ff4)

(status mdm-ff1 good)
(status mdm-f£f2 good)
(status mdm-ff3 good)
(status mdm-f£f4 good)

RCS Systems

(type rcs frcs)
(type propellant-system frcs-fu)
(type propellant-system frcs-ox)

Oxidizer and Fuel Tank Subsystems

(type tank frcs-ox-tk)
(type tank frcs-fu-tk)

(type propellant-tank frcs-ox-tk)
(type propellant-tank frcs-fu-tk)

(status frcs-ox-tk good)
(status frcs-fu~tk good)

(type valve frcs-ox-tk-isol-12-valve)
(type valve frcs-ox-tk-isol-345-valve)
(type valve frcs-fu-tk-isol-12-valve)
(type valve frcs-fu-tk-isol-345-valve)

(type propellant-tank-valve frcs-ox-tk-isol-12-valve)
(type propellant-tank-valve frcs-ox-tk-isol-345-valve)
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(type propellant-tank-valve fres-fu-tk-isol-12-valve)
(type propellant-tank-valve frcs-fu-tk-isol-345-valve)

(status frcs-ox-tk-isol-12-valve good)
(status frcs-ox-tk-isol-345-valve good)
(status frcs-fu-tk-isol-12-valve good)
(status frcs-fu-tk-isol-345-valve good)

following values are op, cl

(functional position 1)
(negation-as-failure position)

(position frcs-ox-tk-isol-12-valve op)
(position frcs-ox-tk-isol-345-valve op)
(position frcs-fu-tk-isol-12-valve op)
(position frcs-fu-tk-isol-345-valve op)

(type switch frcs-prop-tk-isol-12-switch)
(type switch frcs-prop-tk-isol-345-switch)

(switch frcs-ox-tk-isol-12-valve frcs-prop-tk-isol-12-switch)
(switch frcs-ox-tk-isol-345-valve frcs-prop-tk-isol-345-switch)
(switch frcs-fu-tk-isol-12-valve frcs-prop-tk-isol-12-switch)
(switch frcs-fu-tk-isol-345-valve frcs-prop-tk-isol-345-switch)

(talkback frcs-ox-tk-isol-12-valve frcs-prop-tk-isol-12-talkback)
(talkback frcs-ox-tk-isol-345-valve frcs-prop-tk-isol-345-talkback)
(talkback fres-fu-tk-isol-12-valve frcs-prop-tk-isol-12-talkback)
(talkback frcs-fu-tk-isol-345-valve frcs-prop-tk-isol-345-talkback)

(associated-talkback frcs-prop-tk-isol-12-switch frcs-prop-tk-isol-12-talkback)
(associated-talkback frcs-prop-tk-isol-345-switch frcs-prop-tk-isol-345-talkback)

following values are man-op, man-cl, gpc-op, gpc-cl note drive-capability fact-invoked on

status
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(negation-as-failure drive-capability)

(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability

(type p-xdcr frcs-
(type p-xdcr frcs-
(type p-xdcr frcs-
(type p-xdcr frcs-

frcs-ox-tk-isol-12-valve man-op)
frcs-ox-tk-isol-12-valve man-cl)
frcs-ox-tk-isol-12-valve gpc-op)
frcs-ox-tk-isol-12-valve gpc-cl)
frcs-ox-tk-isol-345-valve man-op)
frcs-ox-tk-isol-345-valve man-cl)
frcs-ox-tk-isol-345-valve gpc-op)
frcs-ox-tk-isol-345-valve gpc-cl)
frcs-fu-tk-isol-12-valve man-op)
frcs-fu-tk-isol-12-valve man-cl)
frcs-fu-tk-isol-12-valve gpc-op)
frcs-fu-tk-isol-12-valve gpc-cl)
frcs-fu-tk-isol-345-valve man-op)
frcs-fu-tk-isol-345-valve man-cl)
frcs-fu-tk-isol-345-valve gpc-op)
frcs-fu-tk-isol-345-valve gpc-cl)

ox-tk-p-xdcr)
ox-tk-out-p-xdcr)
fu-tk-p-xdcr)
fu-tk-out-p-xdcr)

(status frcs-ox-tk-p-xdcr good)

(status frcs-ox-tk-out-p-xdcr good)

(status frcs-fu-tk-p-xdcr good)

(status frcs-fu-tk-out-p-xdcr good)

(pressure-11 frcs-
(pressure-11 frcs-

ox-tk 230)
fu-tk 230)

(pressure-ul frcs-ox-tk 290)

(pressure-ul frcs-fu-tk 290)

(functional value 1)

(value frcs-ox-tk-p-xdcr 245)
(value frcs-ox-tk-out-p-xdcr 245)
(value frcs-fu-tk-p-xdcr 245)
(value frcs-fu-tk-out-p-xdcr 245)
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(functional pressure 1)

(pressure frcs-ox-tk 245)
(pressure frcs-fu-tk 245)

Helium Tank Subsystems

(type tank frcs-ox-he-tk)
(type tank frcs-fu-he-tk)

(type he-tank frcs-ox-he-tk)
(type he-tank frcs-fu-he-tk)

(type valve frcs-ox-he-tk-isol-A-valve)
(type valve frcs-ox-he-tk-isol-B-valve)
(type valve frcs-fu-he-tk-isol-A-valve)
(type valve frcs-fu-he-tk-isol-B-valve)

(type he-tank-valve frcs-ox-he-tk-isol-A-valve)
(type he-tank-valve frcs-ox-he-tk-isol-B-valve)
(type he-tank-valve frcs-fu-he-tk-isol-A-valve)
(type he-tank-valve frcs-fu-he-tk-isol-B-valve)

(status frcs-ox-he-tk-isol-A-valve good)
(status frcs-ox-he-tk-isol-B-valve good)
(status frcs-fu-he-tk-isol-A-valve good)
(status frcs-fu-he-tk-isol-B-valve good)

following values are op, cl

(position frcs-ox-he-tk-isol-A-valve op)
(position frcs-ox-he-tk-isol-B-valve cl)
(position frcs-fu-he-tk-isol-A-valve op)

(position frcs-fu-he-tk-isol-B-valve cl)

(type switch frcs-he-tk-isol-A-switch)
(type switch frcs-he-tk-isol-B-switch)

(switch frcs-ox-he-tk-isol-A-valve frcs-he-tk~isol-A-switch)
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(switch frcs-ox-he-tk-isol-B-valve frcs-he-tk-isol-B-switch)
(switch fres-fu-he-tk-isol-A-valve frcs-he-tk-isol-A-switch)
(switch frcs-fu-he-tk-isol-B-valve frcs-he-tk-isol-B-switch)

(talkback frcs-ox-he-tk-isol-A-valve frcs-he-tk-isol-A-talkback)
(talkback frcs-ox-he-tk-isol-B-valve frcs-he-tk-isol-B-talkback)
(talkback frcs-fu-he-tk-isol-A-valve frcs-he-tk-isol-A-talkback)
(talkback frcs-fu-he-tk-isol-B-valve frcs-he-tk-isol-B-talkback)

(associated-talkback frcs-he-tk-isol-A-switch frcs-he-tk-isol-A-talkback)
(associated-talkback frcs-he-tk-isol-B-switch frcs-he-tk-isol-B-talkback)

following values are man-op, man-cl, gpc-op, gpc-cl

(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-~capability
(drive-capability
(drive-capability

frcs-ox-he-tk-isol-A-valve
frcs-ox-he-tk-isol-A-valve
frcs-ox-he-tk-isol-A-valve
frcs-ox-he-tk-iscl-A-valve
frcs-ox-he-tk-isol-B-valve
frcs-ox-he-tk-isol-B-valve
frcs-ox-he-tk-isol-B-valve
frcs-ox-he-tk-isol-B-valve
frcs-fu-he-tk-isol-A-valve
frcs-fu-he-tk-isol-A-valve
frcs-fu-he-tk-isol-A-valve
frcs-fu-he-tk-isocl-A-valve
frcs-fu-he-tk-isol-B-valve
frcs-fu-he-tk-isol-B-valve
frcs-fu-he-tk-isol-B-valve
frcs-fu-he-tk-isol-B-valve

man-op)
man-cl)
gpc-op)
gpc-cl)
man-op)
man-cl)
gpc-op)
gpc-cl)
man-op)
man-cl)
gpc-op)
gpc-cl)
man-op)
man-cl)
gpc-op)
gpc-cl)

(type p-xdcr frcs-ox-he-tk-p-i-xdcr)
(type p-xdcr frcs-ox-he-tk-p-2-xdcr)
(type p-xdcr frcs-fu-he-tk-p-1-xdcr)
(type p-xdcr frcs-fu-he-tk-p-2-xdcr)
(status frcs-ox-he-tk-p-1-xdcr good)
(status frcs-ox-he-tk-p-2-xdcr good)
(status frcs-fu-he-tk-p-1-xdcr good)
(status frcs-fu-he-tk-p-2-xdcr good)
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(pressure-11 frcs-ox-he-tk 500)
(pressure-11 frcs-fu-he-tk 500)
(pressure-ul frcs-ox-he-tk 50000)
(pressure-ul frcs-fu-he-tk 50000)

(value frcs-ox-he-tk-p-1-xdcr 3000)
(value frcs-ox-he-tk-p-2-xdcr 3000)
(value frcs-fu-he-tk-p-1-xder 3000)
(value frcs-fu-he-tk-p-2-xdcr 3000)

(pressure frcs-ox-he-tk 3000)
(pressure frcs-fu-he-tk 3000)

(type regulator frcs-ox-he-tk-A-reg)
(type regulator frcs-ox-he-tk-B-reg)
(type regulator frcs-fu-he-tk-A-reg)
(type regulator frcs-fu-he-tk-B-rag)

- (status frcs-ox-he-tk-A-reg good)
(status frcs-ox-he-tk-B-reg good)
(status frcs-fu-he-tk-A-reg good)
(status frcs-fu-he-tk-B-reg good)

Manifolds

(type manifold frcs-ox-manf-1)
(type manifold frcs-ox-manf-2)
(type manifold frcs-ox-manf-3)
(type manifold frcs-ox-manf-4)
(type manifold frcs-ox-manf-5)
(type manifold frcs-fu-manf-1)
(type manifold frcs-fu-manf-2)
(type manifold frcs-fu-manf-3)
(type manifold frcs-fu-manf-4)
(type manifold frcs-fu-manf-5)

(type valve frcs-ox-manf-1-valve)
(type valve frcs-ox-manf-2-valve)
(type valve frcs-ox-manf-3-valve)
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(type
(type
(type
(type
(type
(type
(type

(type
(type
(type
(type
(type
(type
(type
(type
(type
(type

valve frcs-ox-manf-4-valve)

valve frcs-ox-manf-5-valve)

valve frcs-fu-manf-1i-valve)

valve frcs-fu-manf-2-valve)
valve frcs-fu-manf-3-valve)
valve frcs-fu-manf-4-valve)

valve frcs-fu-manf-S5-valve)

manifold-valve
manifold-valve
manifold-valve
manifold-valve
manifold-valve
manifold-valve
manifold-valve
manifold-valve
manifold-valve

manifold-valve

frcs-ox-manf-1-valve)
frcs-ox-manf-2-valve)
frcs-ox-manf-3-valve)
frcs-ox-manf-4-valve)
frcs-ox-manf-5-valve)
frcs-fu-manf-1-valve)
frcs-fu-manf-2-valve)
frcs-fu-manf-3-valve)
frcs-fu-manf-4-valve)
frcs-fu-manf-5-valve)

(status
(status
(status
(status
(status
(status
(status
(status
(status
(status

fres-ox-manf-1-valve
frcs~ox-manf-2-valve
frcs-ox-manf-3-valve
frcs-ox~-manf-4-valve
frcs-ox-manf-5-valve
frcs-fu-manf-i~-valve
frcs-fu-manf-2-valve
frcs-fu-manf-3-valve
frcs-fu-manf-4-valve
frcs-fu-manf-5-valve

good)
good)
good)
good)
good)
good)
good)
good)
good)
good)

(position
(position
(position
(position
(position
(position
(position
(position
(position

(position

frcs-ox-manf-1-valve
frcs-ox-manf-2-valve
frcs-ox-manf-3-valve
frcs-ox-manf-4-valve
frcs-ox-manf-5-valve
frcs-fu-manf-i-valve
frcs-fu-manf-2-valve
frcs-fu-manf-3-valve
frcs-fu-manf-4-valve
frcs-fu-manf-5-valve

op)
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(type
(type
(type
(type
(type

(switch
(switch
(switch
(switch
(switch
(switch
(switch
(switch
(switch
(switch

frcs-ox-manf-1i-valve
frcs-ox-manf-2-valve
frcs-ox-manf-3-valve
frcs-ox-manf-4-valve
fres-ox-manf-5-valve

frcs-fu-manf-1-valve

fres-fu-manf-2-valve
frcs-fu-manf-3-valve
frcs-fu-manf-4-valve
frcs-fu-manf-5-valve

switch frcs-manf-1-switch)
switch frcs-manf-2-switch)
switch frcs-manf-3-switch)
switch frcs-manf-4-switch)
switch frcs~-manf-5-switch)

frcs-manf-1-switch)
frcs-manf-2-switch)
frcs-manf-3-switch)
frcs-manf-4-swvitch)
frcs-manf-5-switch)
frcs-manf~-i-switch)
frcs-manf-2~-switch)
frcs-manf-3-switch)
frcs-manf-4-switch)
frcs-manf-5-switch)

(associated~talkback frcs-manf-1-switch frcs-manf-i-talkback)
(associated-talkback frcs-manf-2-switch frcs-manf-2-talkback)
(associated-talkback frcs-manf-3-switch frcs-manf-3-talkback)
(associated-talkback frcs-manf-4-switch frcs-manf-4-talkback)
(associated-talkback frcs-manf-5-switch frcs-manf-5-talkback)

(talkback
(talkback
(talkback
(talkback
(talkback
(talkback
(talkback
(talkback
(talkback
(talkback

frcs~ox-manf-i-valve
frcs-ox-manf-2-valve
frcs-ox-manf-3-valve
frcs-ox-manf-4-valve
frcs-ox-manf-5-valve
frcs-fu-manf-1-valve
frcs-fu-manf-2-valve
frcs-fu-manf-3-valve
frcs-fu-manf-4-valve
frcs-fu-manf-5-valve

frcs-manf-1-talkback)
frcs-manf-2-talkback)
frcs-manf-3-talkback)
frcs-manf-4-talkback)
frcs-manf-5-talkback)
frcs-manf-1-talkback)
frcs-manf-2-talkback)
frcs-manf-3-talkback)
frcs-manf-4-talkback)
frcs-manf-S-talkback)

(drive-capability frcs-ox-manf-i-valve man-op)

(drive-capability frcs-ox-manf-2-valve man-op)

(drive-capability frcs-ox-manf-3-valve man-op)

(drive-capability frcs-ox-manf-4-valve man-op)

(drive-capability frcs-ox-manf-5-valve man-op)
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(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability
(drive-capability

(pressure frcs-ox-

frcs-fu-manf-1-valve
frcs-fu-manf-2-valve
frcs-fu-manf-3-valve
frcs-fu-manf-4-valve
frcs-fu-manf-5-valve
frcs-ox-manf-1-valve
frcs-ox-manf-2-valve
frcs-ox-manf-3-valve
frcs-ox-manf-4-valve
frcs-ox-manf-5-valve
frcs-fu-manf-1-valve
frcs-fu-manf-2-valve
fres-fu-manf-3-valve
frcs-fu-manf-4-valve
frcs-fu-manf-5-valve
frcs-ox-manf-1-valve
frcs-ox-manf-2-valve
frcs-ox-manf-3-valve
frcs-ox-manf-4-valve
frcs-ox-manf-5-valve
frcs-fu-manf-1-valve
frcs-fu-manf-2-valve
frcs-fu-manf-3-valve
frcs-fu-manf-4-valve
frcs-fu-manf-5-valve
frcs-ox-manf-1-valve
frcs-ox-manf-2-valve
frcs-ox-manf-3-valve
frecs-ox-manf-4-valve
frcs-ox-manf-5-valve
frcs-fu-manf-1-valve
frcs-fu-manf-2-valve
frcs-fu-manf-3-valve
frcs-fu-manf-4-valve
frcs-fu-manf-5-valve

manf-1 245)

(pressure frcs-ox-manf-2 245)

(pressure frcs-ox-manf-3 245)

(pressure frcs-ox-manf-4 245)
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man-op)
man-op)
man-op)
man-op)
man-op)
man-cl)
man-cl)
man-cl)
man-cl)
man-cl)
man-cl)
man-cl)
man-cl)
man-cl)
man-cl)
gpe-cl)
gpc-cl)
gpc-cl)
gpc-cl)
gpc-cl)
gpe-cl)
gpc-cl)
gpc-cl)
gpe-cl)
gpc-cl)
gpc-op)
gpc-op)
gpc-op)
gpc-op)
gpc-op)
gpc-op)
gpc-op)
gpc-op)
gpc-op)
gpc-op)



(pressure frcs-fu-manf-1 245)

(pressure frcs-fu-manf-2 245)

(pressure frcs-fu-manf-3 245)

(pressure frcs-fu-manf-4 245)

(type p-xdcr
(type p-xdcr
(type p-xdcr
(type p-xdcr
(type p-xdcr
(type p-xdcr
(type p-xdcr
(type p-xdcr

frcs-ox-manf-1-p-xdcr)
frcs-ox-manf-2-p-xdcr)
frcs-ox-manf-3-p-xdcr)
frcs-ox-manf-4-p-xdcr)
frcs-fu-manf-1-p-xdcr)
frcs-fu-manf-2-p-xdcr)
frcs-fu-manf-3-p-xdcr)
frcs-fu-manf-4-p-xdcr)

(status
(status
(status
(status
(status
(status
(status

(status

(value
(value
(value
(value
(value
(value
(value
(value

(status
(status
(status

(status
(status

fres-ox-manf-1-p-xder
frcs-ox-manf-2-p-xdcr
frcs-ox-manf-3-p-xdcr
frcs-ox-manf-4-p-xdcr
frcs-fu-manf-1-p-xdcr
frcs-fu-manf-2-p-xdcr
frcs-fu-manf-3-p-xdcr
frcs-fu-manf-4-p-xdcr

frcs-ox-manf-1-p-xdcr
frcs-ox-manf-2-p-xdcr
frcs-ox-manf-3-~p-xdcr
frcs-ox-manf-4-p-xdcr
frcs-fu-manf-1-p-xdcr
frcs-fu-manf-2-p-xder
frcs-fu-manf-3-p-xdcr
frcs-fu-manf-4-p-xdcr

frcs-ox-manf-1 good)
frcs-ox-manf-2 good)
frcs-ox-manf-3 good)
fres-ox-manf-4 good)
frcs-ox-manf-5 good)

(status frcs-fu-manf-1 good)
(status frcs-fu-manf-2 good)
(status frcs-fu-manf-3 good)

good)
good)
good)
good)
good)
good)
good)
good)

245)
245)
245)
245)
245)
245)
245)
245)
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(status frcs-fu-manf-4 good)

(status frcs-fu-manf-5 good)

(manifold~1 frcs-ox frcs-ox-manf-1)

{manifold-2 frcs-ox frcs-ox-manf-2)

(manifold-3 frcs-ox frcs-ox-manf-3)

(manifold-4 frcs-ox frcs-ox-manf-4)

(manifold-5 frcs-ox frcs-ox-manf-5)
(manifold-1 frcs-fu frcs-fu-manf-1)
(manifold-2 frcs-fu frcs-fu-manf-2)
(manifold-3 frcs-fu frcs-fu-manf-3)
(manifold-4 frcs-fu frcs-fu-manf-4)
(manifold-5 frcs-fu frcs-fu-manf-5)

Legs

(type
(type
(type
(type
(type
(type
(type
(type

(type
(type

(type
(type

leg frcs-fu-tk-12-leg)
leg frcs-ox-tk-12-leg)
leg frcs-fu-tk-345-leg)
leg frcs-ox-tk-345-leg)
leg frcs-fu-he-tk-A-leg)
leg frcs-ox-he-tk-A-leg)
leg frcs-fu-he-tk-B-leg)
leg frcs-ox-he-tk-B-leg)

valve frcs-fu-tk-quad-check-valve)
valve frcs-ox-tk-quad-check-valve)

quad-check-valve frcs-fu-tk-quad-check-valve)
quad-check-valve frcs-ox-tk-quad-check-valve)

Miscellaneous

(functional quantity 1)

(quantity frcs-ox-he-tk 40)
(quantity frcs-fu-he-tk 40)

(quantity frcs-ox-tk 40)
(quantity frcs-fu-tk 40)
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(alarm-initiator frcs-fu-tk-out-p-xdcr)

(alarm-initiator frcs-ox-tk-out-p-xdcr)

System Structure

(part-of frcs frcs-fu)

(part-of frcs frcs-ox)

(part-of frcs-ox frcs-ox-he-tk)
(part-of frcs-fu frcs-fu-he-tk)
(part-of frcs-ox frcs-ox-tk)
(part-of frcs-fu frcs-fu-tk)

(part-of frcs-fu frcs-fu-he-tk-A-reg)
(part-of frcs-ox frcs-ox-he-tk-A-reg)
(part-of frecs-fu frcs-fu-he-tk-B-reg)
(part-of frcs-ox frcs-ox-he-tk-B-reg)

(part-of frcs-ox frcs-ox-manf-1)
(part-of frcs-ox frcs-ox-manf-2)
(part-of frcs-ox frcs-ox-manf-3)
(part-of frcs-ox frcs-ox-manf-4)
(part-of frcs-ox frcs-ox-manf-5)
(part-of frcs-fu frcs-fu-manf-1)
(part-of frecs-fu frcs-fu-manf-2)
(part-of frcs-fu frcs-fu-manf-3)
(part-of frcs-fu frcs-fu-manf-4)
(part-of frcs-fu frcs-fu-manf-5)

(part-of frcs-ox frcs-ox-tk-isol-12-valve)
(part-of frcs-ox frcs-ox-tk-isol-345-valve)
(part-of frcs-fu frcs-fu-tk-isol-12-valve)
(part-of frcs-fu frcs-fu-tk-isol-345-valve)

(part-of frcs-ox frcs-ox-he-tk-isol-A-valvae)
(part-of frcs-ox frcs-ox-he-tk-isol-B-valve)
(part-of frcs-fu frcs-fu-he-tk-isol-A-valve)
(part-of frcs-fu frcs-fu-he-tk-isol-B-valve)
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(part-of frcs-fu

(part-of frcs-ox
(part-of frcs-ox
(part-of frcs-ox
(part-of frcs-ox
(part-of frcs-ox
(part-of frcs-ox
(part-of frecs-fu
(part-of frcs-fu
(part-of frcs-fu
(part-of frecs-fu
(part-of frcs-fu
(part-of frcs-fu
(part-of frcs-ox
(part-of frcs-fu
(part-of frcs-ox
(part-of frcs-fu
(part-of frcs-ox
(part~of frecs-fu
(part-of frecs-ox
(part-of frcs-fu

(part-of frcs-ox

(associated-unit
(associated-unit
(associated-unit
(associated-unit
(associated-unit
(associated-unit
(associated-unit

(associated-unit

(associated-unit
(associated-unit
(associated-unit
(associated-unit

(associated-unit

frcs-fu-tk-quad-check-
frcs-ox-tk-quad-check-

fres-ox-manf-i-valve)
frcs-ox-manf-2-valve)
fres-ox-manf-3-valve)
frcs-ox-manf-4-valve)
frcs-ox-manf-5-valve)
frcs-fu-manf-1i-valve)
frcs-fu-manf-2-valve)
frcs-fu-manf-3-valve)
frcs-fu-manf-4-valve)

frcs-fu-manf-5-valve)

fres-fu-tk-12-leg)
frcs-ox-tk-12-leg)
frcs-fu-tk-345-leg)
frcs-ox-tk-345-leg)
frcs-fu-he-tk-A-leg)
frcs-ox-he-tk-A-leg)
frcs-fu-he-tk-B-leg)
fres-ox-he-tk-B-leg)

frcs-fu-tk-quad-check-
frcs-ox-tk-quad-check-

valve)

valve)

valve)

valve)

frcs-ox~tk-p-xder fres-ox-tk)

frcs-fu-tk-p-xdcr frcs-fu-tk)

frcs-ox-tk-out-p-xdcr
frcs-fu-tk-out-p-xdcr

frcs-ox-tk)
fres-fu-tk)

frcs-ox-he-tk-p-2-xdcr frcs-ox-he-tk)
frcs-fu-he-tk-p-2-xdcr frcs-fu-he-tk)

frcs-ox-he-tk-p-1-xdcr frcs-ox-he-tk)
frcs-fu-he-tk-p-1-xdcr frcs-fu-he-tk)

frcs-ox-manf-1-p-xdcr
frcs-ox-manf-2-p-xdecr
frcs-ox-manf-3-p-xdcr
frcs-ox-manf-4-p-xdcr
frcs-fu-manf-1-p-xdecr
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frcs-ox-manf-2)
fres-ox-manf-3)
frcs-ox-manf-4)
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(associated-unit frcs-fu-manf-2-p-xdcr frcs-fu-manf-2)
(associated-unit frcs-fu-manf-3-p-xdcr frcs-fu-manf-3)
(associated-unit frcs-fu-manf-4-p-xdcr frcs-fu-manf-4)

(connects frcs-ox-he-tk-isol-A-valve frcs-ox-he-tk frcs-ox-he-tk-leg)
(connects frcs-ox-he-tk-isol-B-valve frcs-ox-he-tk frcs-ox-he-tk-leg)
(connects frcs-fu-he-tk-isol-A-valve frcs-fu-he-tk frcs-fu-he-tk-leg)
(connects frcs-fu-he-tk-isol-B-valve frcs-fu-he-tk frcs-fu-he-tk-leg)

(connects frcs-fu-tk-quad-check-valve frcs-fu-he-tk-leg frcs-fu-tk)
(connects frcs-ox-tk-quad-check-valve frcs-ox-he-tk-leg frcs-ox-tk)

(connects frcs-ox-tk-isol-12-valve frcs-ox-tk frcs-ox-tk-12-leg)
(connects frcs-ox-tk-isol-345-valve frcs-ox-tk frcs-ox-tk-345-leg)
(connects frcs-fu-tk-isol-12-valve frcs-fu-tk frcs-fu-tk-12-leg)
(connects frcs-fu-tk-isol-345-valve frcs-fu-tk frcs-fu-tk-345-leg)

(connects frcs-ox-manf-1-valve frcs-ox-tk-12-leg frcs-ox-manf-1)
(connects frcs-ox-manf-2-valve frcs-ox-tk-12-leg frcs-ox-manf-2)
(connects frcs-ox-manf-3-valve frcs-ox-tk-345-leg frcs-ox-manf-3)
(connects frcs-ox-manf-4-valve frcs-ox-tk-345-leg frcs-ox-manf-4)
(connects frcs-ox-manf-5-valve frcs-ox-tk-345-leg frcs-ox-manf-5)
(connects frcs-fu-manf-1-valve frcs-fu-tk-12-leg frcs-fu-manf-1)
(connects frcs-fu-manf-2-valve frcs-fu-tk-12-leg frcs-fu-manf-2)
(connects frcs-fu-manf-3-valve frcs-fu-tk-345-leg frcs-fu-manf-3)
(connects frcs-fu-manf-4-valve frcs-fu-tk-345-leg frcs-fu-manf-4)
(connects frcs-fu-manf-S-valve frcs-fu-tk-345-leg frcs-fu-manf-5)

(negation-as-failure alternate)

(alternate frcs-fu-he-tk-isol-A-valve frcs-fu-he-tk-isol-B-valve)
(alternate frcs-fu-he-tk-isol-B-valve frcs-fu-he-tk-isol-A-valve)
(alternate frcs-ox-he-tk-isol-A-valve frcs-ox-he-tk-isol-B-valve)
(alternate frcs-ox-he-tk-isol-B-valve frcs-ox-he-tk-isol-A-valve)
(alternate frcs-fu-he-tk-A-reg frcs-fu-he-tk-B-reg)
(alternate frcs-fu-he-tk-B-reg frcs-fu-he-tk-A-reg)
(alternate frcs-ox-he-tk-A-reg frcs-fu-he-tk-B-reg)
(alternate frcs-ox-he-tk-B-reg frcs-fu-he-tk-A-reg)
(alternate frcs-ox-tk-p-xdcr frcs-ox-tk-out-p-xdcr)
(alternate frcs-ox-tk-out-p-xdcr frcs-ox-tk-p-xdcr)
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(alternate frcs-fu-tk-out-p-xdcr frcs-fu-tk-p-xdcr)
(alternate frcs-fu-tk-p-xdcr frcs-fu-tk-out-p-xdcr)
(alternate frcs-ox-he-tk-p-1-xdcr frcs-ox-he-tk-p-2-xdcr)
(alternate frcs-ox-he-tk-p-2-xdcr frcs-ox-he-tk-p-1i-xdcr)
(alternate frcs-fu-he-tk-p-2-xdcr frcs-fu-he-tk-p-1i-xdcr)
(alternate frcs-fu-he-tk-p-i-xdcr frcs-fu-he-tk-p-2-xdcr)

(associated-regulator frcs-fu-he-tk-isol-A-valve frcs-fu-he-tk-A-reg)
(associated-regulator frcs-fu-he-tk-isol-B-valve frcs-fu-he-tk-b-reg)
(associated-regulator frcs-ox-he-tk-isol-A-valve frcs-ox-he-tk-A-reg)
(associated-regulator frcs-ox-he-tk-isol-B-valve frcs-ox-he-tk-b-reg)
(other-propellant-system frcs-fu frcs-ox)
(other-propellant-system frcs-ox frcs-fu)

(functional mode 2)

(- (gpc-display frcs-fu tk-p))
(" (gpc-display frcs-ox tk-p))
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Appendix B

The RCS Procedures

The various KAs used in the RCS KA library are given on the following pages.
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tk-p-high

INVOCATION:

(AND (*FACT (STATUS SREG FAIL))
(*FACT (OVEAPRESSURIZED $TK $P-SYS)))

CONTEXT: s

(AND (*FACT (ALTEANATE $REG $AEG 1))
(*FACT (ASSOCIATED-AEGULATOR $v1 SREG1)) (! (POSITION $V1 OP})
(*FACT [SWITCH $V1 $51)))

GOAL ACHIEVER?:

T

EFFECTS:

{~ (OYERPRESSUAIZED $TK $P-5YS)) 4
(SEND-MESSAGE
INTERFACE
(REQUEST RCS
(! (MONITOR (PRESSURE-BELOW $TK
312000

PAOPERTIES:
NiL

14
~

¢
(WAIT-UNTIL
(ACHIEVED INTERFACE
{t (MONITOR (PRESSURE-BELOW $TK
31200

{=>
(~
{ACHIEVED INTERFACE

(! (MONITOR (PRESSURE-BELOW $TK
312.00M)

{! (POSITION $S1 GPC))

{
(PRINT-WARNING
(FORMAT NIL
"Overpressurization of ~A resolved*
$TKM)



cw-rcs-high

INVOCATION:
(*FACT (OVERPRESSURIZED $TK $P-5YS))

CONTEXT:
(AND (®FACT (TYPE PROPELLANT-TANK $TK))
(*FACT (PART-OF $ACS $P-5Y3)))

GOAL ACHIEVER?:
T

EFFECTS:
NIL

PRAOPEARTIES:
{(SAFETY-HANDLER T))

START

{? (& (ASSOCIATED-REGULATOR $V $REGQ)
(PART-OF $P-SYS $V)
(POSITION $V OP)
(ALTERNATE $V $V1))

St

(1 (POSITION $V CL))

(! (POSITION $V1 CL)

(=) (STATUS $REQ FAILY)



Trcs—secure

INVOCATION:

(AN

D (*GOAL (! (SECURED $SYS)))
(*FACT (TYPE PAOPELLANT-SYSTEM $5Y5))

CONTEXT:

NiL

(;OAL ACHIEVER?:

EFFECTS:

NIL

PAOPERTIES:
NiIL

) (¢ (STATUS DAP FREE-DRIFT)}

O

(! (= SM
(ALL $M1
(& (TYPE MANIFOLD-VALYE $M1}
(PART-OF $SYS SM1MN

-~———{8]

¢ (POSITION-UPDATE $M CL)}

(= $T
(ALL $T1
(& (TYPE PROPELLANT-TANK-VALVE $T1)
(PART-OF $SYS $T1MHM)

¢! (POSITION-UPDATE $T CL))

¢t (= SH
(ALL $H1
(& (TYPE HE-TANK-YALVE $H1)
(PART-OF $SYS $H1IMM

e T o e ] e ey ]

- {1 (POSITION-UPDATE $H CLY)

o
~

' 'PRINT-UST (FORMAT NIL "~a secured® $5YS)))

O



rcs-leak-isol

INVOCATION:
(*GOAL (! (LEAK-ISOLATED $P-5Y¥S)))

CONTEXT:

(AND (*FACT (MANIFOLD-1 $P-5YS SMANF1))
(*FACT (MANIFOLD-2 $P-SYS SMANF2))
(*FACT (MANIFOLD=-3 3P-5YS SMANF3))
(*FACT (MANIFOLD-4 $P-SYS SMANF4))
(*FACT (MANIFOLD-5 $P-SYS SMANFS))
(*FACT (TYPE HE- TANK $HE-TK))
(*FACT (PART-OF $P-SYS SHE-TK))
{*FACT (TYPE PROPELLANT-TANK $PAOP-TK))
{*FACT (PAAT-OF $P-SYS $PAOP-TK))
{*FACT (CONNECTS $V1 SPAOP-TK $12- TANK-LEG))
(*FACT (CONNECTS $V2 $12-TANK-LEG SMANF1))
(*FACT (CONNECTS $V3 SPAOP-TK $345-TANK-LEG))
(*FACT (GONNECTS $V4 $345-TANK-LEG SMANF3))
{*FACT (CONNECTS 3VS SHE-LEG SPROP-TK)))

{? (¥ (DECREASING SDELTA-P1)
(¢ (PRESSURE-OF SMANF1) 190,

GOAL ACHIEVER?:
r

EFFECTS:

it

PROPEATIES: {? (PRESSURE-CHANGE $MANF2 $DELTA-P2))
NiL

(? (V (DECREASING $DELTA-P2)
(< (PRESSURE~-OF $MANF2) 190

ECREASING SDELTA-P2)
{>= (PREBRURE-OF SMANF2) 190.)))

(¢ (PRINT-UST (FQRMAT NIL
"~A 1/2 tank leg leak”

{ (PRINT-UST (FCRMAT NIL
$P-5YS))) e ¢

*Leak in manifold ~A"
$SMANF1)))

{=> (STATUS tMANF1 LEAK))

(=> (STATUS $12{TANK-LEG LEAK))

(? (& (NOT-DECREASING SDELTA-P2)
(>= (PRESSURE-OF $MANF2) 190.

(7 (& (NOT-DECREASING SDELTA-P3)

(? (V (DEGREASING $DEL (Y= (PRESSURE~OF $MANF3) 190.))

(< (PRESSURE-OF $Mi

{? {& (NOT-DECREASING $DELTA-P4)
(>= (PRESSURE-OF $SMANF4) 190.)))

{? (v (DECREABING
{< (PRESBUR

LTA-P4)

E
OF SMANF4) 190.))) {< (PRESSURE-Q

{! (PRINT-LIST vORMAT NIL
“Leak in manifold ~A"
~UST (FORMAT NIL MANF3)))
“~A 3/4/5 tank leg feak"
$P-SYS)H)

{=> (STATUS $MANF3 LEAK))
(=> (STAFUS $345-TANK-LEQ LEAK)) {=> (§TATUS

(=)
r_4/'

(? (DECREASING $DELTA-PS))

{? (v (DECREASING $D P4)
MANF4) 190.))

{1 (PRIYT-LIST (FORMAT NIL

(I {SECURED $P-3Y8))

(? (PRESSURE~CHANGE $MANF1 S$DELTA-P1))

{? (& (NOT-DECREASING $DELTA-P1)
{>= (PRESSURE-OF $MANF1) 190.)))

{? (PRESSURE~CHANGH

$MANF2 SDELTA-P2))

(7 {(V (DECREASING $DELTA
{< (PRESSURE-OF $M

(! (PAINT-LIST (FO

“Leak in manifoild ~A*"
SMANF2)))

(=> (STATUS tMANF2 LEAK))

3_(NOT-DECREASING $DELTA~-P4)
(PRESSURE-OF SMANF4) 190.)»

“Leak in manifold ~A*

$SMANF4))}
(? (PRESSURE-CHANGE\ $HE-TK $OELTA-PS))

(? (NOT-DECREASING $DELTA-PS5))



override-manf-cl

INVOCATION:
(AND (*FACT (OVERAIDE SMANF CL-OVAD))
(*FACT (STATUS SMANF GOOD))
(*FACT (TYPE MANIFOLD SMANF))
(*FACT (~ (UNDERPRESSURIZED $P-SYS)))
(*FACT (PAAT-Of $P-SY5S SMANF))
CONTEART (CONNECTS SMANF-V SLEG SMANF)))

NIL

GOAL ACHIEVER?:
T

EFFECTS:
(~ (OVERRIDE $MANF CL-OVAD))

PROPEATIES:
NiL

(! (POSITION $MANF-V OP))



request-and-answer-pressure

INVOGATION:
(*GOAL (! (REQUESTED $ASKER
SAECIPIENT
{? (PAESSURE SU $£)))))
CONTEXT:
niL
GOAL ACHIEVER?: (! {SEND-MESSAGE SRECIPIENT
T (REQUEST| $AS
(2 [(PRESSURE $U ANYI)
. «
errecrTs: (WAIT-UNTIL (TRANSFORMFAC "(ACHIEVED $RECIPENT
(? (ARESSURE $U
P
NILY)
PAOPEATIES:
m{_o £ £S RAECIPIEN

(=> {(~ (ACHIEVED T
(? (PRESSURE $U $P))))



pressure-request

INVOCATION:

(*GOAL (? (UPDATED-PRESSUAE SU $P)))
CONTEKXT:

nit

GOAL ACHIEVER?:
T

EFFECTS:
(PRESSURE $U 3P)

PROPEATIES:
NIt

(! {REQUESTED RGCS INTERFACE (? (PRESSURE $U $P))))



pvt-lost

INVOCATION:
(AND (*FACT (TYPE P-XDCA $XDCH))
(*FACT (STATUS $XDCH 8AD)))

CONTEXT:
NiL
{ {PRINT-UST (FORMWT NIL
“PVT is lost on tank ~A"
GOAL ACHIEVER?: (TR-OF $XDCR))
T
EFFECTS:

(STATUS (PVT {(TK-OF $XDCRH)) 8AD)

PRAOPEATIES:
NIL



switch-update

INVOCATION:
(®GOAL (! (POSITION-UPDATE $L $A)))

CONTEXT: {7 {NULL $L))

NIL

2 (O (LENGTH 3L} 0.))

GOAL ACHIEVER?:
T

{! (POSITION (CAR $L) $A))

EFFECTS:

NiL m

(! (POSITION-UPDATE (CDR $L) 3A)

PROPEATIES:
NiL



guantityl

INVOCATION:

(AND (*GOAL (? (QUANTITY $TK $X)))
(*FACT (STATUS (PVT $TK) GOOD)))

CONTEXT:
NIL

GOAL ACHIEVER?:
T

EFFECTS:
(QUANTITY STK $X)

PROPEATIES:
NIL

(
(PRINT-LIST (FORMA

(2 (GPC-PVT $TK $X))

NiL
Quagtity in tank ~A Is ~A"



request-and-answer-pressure-change

INVOCATION:
(*GOAL (! (ﬂEQUE-S,TED SASKER
AEC

ECIPIENT
(? (PRESSURE-CHANGE SU
$2)0)
CONTEXT:
NiL
1
GOAL ACHIEVER?: (SEND-MESSAGE
r SRECIPENT
(REQUEST $ASKER (? (PRESSURE-CHANGE $U ANY))))
. ¢
EFFECTS: (WAIT-UNTIL
(TRANSFORM-AC *(ACHIEVED SRECIPIENT
? (PRESSURE-CHANGE $U $P)))
NILY)
PROPERTIES:
NIL (=> (~ (ACHIEVED $RECIPIENT
(7 (PRESSURE-CHANGE $U $P)))))



cw-rcs-prop-low

INVOCATION:

{AND (*FACT (CW-LIGHT FWD<-ACS))
(°FACT (ALAAM

)
(*FACT (GPC-DISPLAY $P-3YS LEAK)))

CONTEXT:
(AND (*FACT (~ (GPC-DISPLAY $P-SYS TK-~P))) Q
(*FACT (PART-OF $ACS $P-3YS)) (PRINT-LIST
(*FACT (TYPE PAOCPELLANT-TANK $TK)) (FORMAT
(:FACT {(PAAT-OF 8P-SY§ ’5”?) NIL
(*FACT (TYPE HE-TANK SHE-TK)) “Possibie | tor failed cl in ~a in ~a*
(*FACT (PAAT-OF $P-5Y3 $HE-TK))) s_nzsbe eak or regulator failed closed in ~a in ~a
$ARCS)H))
GOAL ACHIEVER?:
T (? {& (ASSOCIATED-REGULATOR $V SREG)
(PART-OF $P-SYS $V)
(POSITION $V 0P)))
EFFECTS:
NIL
PAOPEATIES:

(? (PRESSURE-CHAN!
((SAFETY-HANOLEAR T))

$HE-TK $DELTA-P))

(? (~ (DECREASING $OELTA-P)))

(? (DECREASING $DELTA-P))

(I (POSITION $Y CL))

(1 (LEAK-ISOLATED $P-SYS))

{! (POSITION (ALTEANATE-OF $V) OP))

(? (PREBSURE-CHANGE $HE-TK $DELTA-P1))

{? {~ (INCREASING $DELTA-P1)))

{? (INCREASING $DELTA-P1))

«
(PRINT-WARNING

(FORMAT NIL «

"~a helium sygem blockage* (PRINT-UST

$P-3YSH) {FORMAT NIL
"hefium regulgtor ~a failed closed”
(REGULATOR}

{1 (= $M
(ALL $M1
(& (TYP

OF $V)H)))

(STATPS $M1 GOODM))
{! (OVERRIDE-UPDATE $M CL-OVRD)}

!
(PRINT-WARNING
(FORMAT
NIL

“Perform loss of verniers grocedure (ORB OPS) for ~A"
$ACS)))



gpc-pvt

INVOCATION:
(*GOAL (? (GPC-PVT $TK $X)))

CONTEXT:
NiL

(]
(PRINT-UST
{FORMAT

GOAL ACHIEVEAZ: NiL . )
T "What is the pvt quantity calculation for tank ~A®
T

EFFECTS:
niL (1 (AEAD $X))

PAOPERTIES:
NIL



dap-as-required

INVOC A TION:
(*GOAL (! (STATUS DAP AS-REQUIAED))) START

CONTEXT:
NIL

GOAL ACHIEVER?: (1 (PRINT-WARNING FORMAT NIL
T "DAP: as required*))}

EFFECTS: END1
(STATUS DAP AS-REQUIAED)

PROPERTIES:
NIL

C -2



quantity2

INVOCATION:
(AND (*GOAL (? (QUANTITY $TK 3X)))
(*FACT (TYPE PROPELLANT -TANK $TK))
{*FACT (STATUS (PVT §TK) 8AD))
(*FACT (PAAT-OF $P-SYS $TK))
(*FACT (OTHER-PROPELLANT-SYSTEM 3P-SYS
$P-5YS51))
("FACT (TYPE PAOPELLANT-TANK $TK 1))
CONIEAST (PAAT-OF $P-5Y51 STK1))
NIL (FACT (STATUS (PYT $TK1) GOOD)))

(? (GPC-PYT $TK1 $X))

QOAL ACHIEVER?:
T

¢
(PAINT-UST (FORMAT NIL
*Quagtity in tank ~A is ~A®

EFFECTS: :x)))
(QUANTITY 3TK $X)

PROPEATIES:
NIL



dap-free-drift

INVOCATION:

{*GOAL (! (STATUS DAP FREE-DRIFT)))

CONTEKT:
NiL

GOAL ACHIEVER?:
P

EFFECTS:
(STATUS DAP FREE-DRIFT)

PROPERATIES:
NI

(! {PRINT-WARNING (FOARMAT NIL “DAP: MAN
ROT: PULSE/PULSE/PULSE™))



alarm-off-underp

INVOCATION:

(AND (*FACT (~ (ALAAM)))
- (®FACT (UNDERPRESSURIZED $TK $P-SYS)))
CONTEXT: ¢
niL (PRINT-WARNING
(FORMAT
NIL
- GOAL ACHIEVER?: “Underpressurization of ACS ~A resolved®
T $P-5YS)H))
EFFECTS:
niL

{=> (~ (UNDERPRESSURIZED $TK $P-SYS)))

PROPEATIES:
NiL



open-or-close

INVOCATION:
(®GOAL (! (POSITION $V $P03)))

CONTEXT:
Nit
(! (SEND-MESSAGE INTERFAGE
(REQUEST ACS
GOAL ACHIEVER?: (1 {POSITION $V
T 1POSN)
EFFECTS: qt
{POSITION 3V $POS) (WAIT-UNTIL

(TRANSFORM-AC "(ACHIEVED INTERFAGE
(! (POSIFION $V $POS))) NIL})

PROPEATIES:
NiL



override-update

INVOCATION:
(*GOAL (! (OVEARIDE-UPDATE 3L $A4)))

CONTEXT: {7 (NULL $L) 7 {> (LENGTH 3L} 0.»
NIL

GOAL ACHIEVER?:
T

! (OYERRIDE (CAR $L) $A))

EFFECTS:
NIL E
1 (OYERRIDE-UPDATE (CDR $L) $A))

PAOPERTIES:
NIL



override

INVOCATION:

(*GOAL (! (OVERRIDE $X 3Y)))
CONTEXT:

NIL

GOAL ACHIEVER?:
T

EFFECTS:
(OVERRIDE $X 3Y)

PAOPEATIES:
NiL

(! (QUERY (FORMAT MIL
“Set override status ~A ~A*

$X
N



quantity3

INVOCATION:
(AND ("GOAL (7 (QUANTITY $TK $X)))
(*EACT (TYPE PROPELLANT-TANK $TK))
(*FACT (STATUS (PVT $TK) BAD))
(°FACT (PART-OF $P-5¥5 $TK)) START
(®FACT (OTHER-PAOPELLANT-SYSTEM $P-SYS
$P-3Y51))
(*FACT (TYPE PAOPELLANT-TANK STK1))
CONGIEAST (PART-OF $P-SYS1 $TK1))
NIt (*FACT (STATUS (PVT $TK1) BAD)))

4]
(PAINT-UST
(FORMAT
NIL
"yse ~a pressure for quantity estimation®
(HE-TK~OF $TK)))

GOAL ACHIEVER?:
T

EFFECTS:
wiL . 51
<!
{PRINT-UST
(FORMAT
. NIL
Z"'LOPEHT’ES- “What is the quantity of [propellant based on hellum pressure in tank ~A"
{HE-TK-OF $TK»)

(! (READ $X))



pressure-change

INVOCATION:
(TGOAL (? (PRESSURAE-CHANGE SUNIT SDELTA)))

CONTEXT:
NiL {! (REQUESTED RCS
INTERFACE
{? (PRESSURFSCHANGE SUNIT $DELTAD)
GOAL ACHIEVER?:
T

EFFECTS:
NiL

PAOPERTIES:
NiL




out-of-range

INVOCATION:

(AND (*GOAL (7 (QUT-OF-RANGE SV SUNIT)))
(*FACT (PRESSURE-UL SUNIT $UL))
(*FACT (PRESSURE-LL SUNIT §LL)))

CONTEAT:
NIL
?_OAL ACHIEVEA?: {2 (V (> $V SUL) (< SV SLL))
EFFECTS: m
niL ¢

(PRINT-UST

(FORMAT

NIL

"The pressure ~A is oJt of range for unit ~A*

SUNITY)
PROPEATIES:
NiL



alarm-off-overp

INVOCA TION:
{AND (*FACT (~ (ALAAM)))
(*FACT (OVEAPRESSUAIZED $TK $P-SYS)))

CONTEXT: I
it (PRINT-WARNING
(FORMAT
NIL
?_OAL ACHIEVERT: *Overpressurization of tank ~A in RCS ~A resolved"
$TK
$P-3Y8)))
EFFECTS:
NIL
{=> {(~ (OVERPRESSURIZED $TK $P-SYS)))
PRAOPEATIES:

NIL



cw-rcs-alarm

INVOCATION:

(AND (“FACT (CW-LIGHT FWD-ACS))
(*EACT (ALAAM))
(*FACT (GPC-DISPLAY 3P-5YS TK-F)))

CONTEXT: -

(AND (*FACT (TYPE PROPELLANT-TANK $TK)) (? (UPDATED-PRESSURE $TK $P))
(*FACT (PAAT-OF $P-SY8 $TK))
(*FACT (PRESSURE-UL $TK $PUL))
(*FACT (PARESSURE-LL $TK $PLL)))

2
(]':"OAL ACHIEVER?: (2 (<= SP $SPLLY)

{? (= SP $PULY)

EFFECTS:
NiL
€7 (& (< $P $HUL) O $P $PLL)D ¢
(PRINT-WARNING
(FORMAT
L
~A in system ~A is underpressurized®

PROPEATIES:

((SAFETY-HANDLEA T))
BAINT-WARNING
AMAT

{FORM,
NIL
*Tant ~A in system ~A is overpressurized®

$TK $P
$P-$YS») $TION (=> (UNDEAPRESSURIZED $TK $P-SYS))

S§10

(=> !OVEﬁPHESSUHIZED $TK $P-SY8)

(=> (& (~ (ALARM))
GPC Y $P-SYS TK-PY)
(~ (CW-LIGHT| FWD-ACS))}



selector

INVOCATION:
(*FACT (SOAK $X))

CONTEXT:
(AND (*FACT (NOSAFETY BEFORE))
(*FACT (> (LENGTH $X) 1.)))

(t (= $F (FACT -INVOKED-KAS~OF $X)))

GOAL ACHIEVER?:
T

¢ (= 0. (LENGTH $H))

EFFECTS:
nNiL
{t (INTENDED~ALL $F))

{! (= $S (SAFETY-ANOLERS-OF $X))

(! (INTEND (SELEC

-RANDOMLY $8)))

(! (INTEND (SELECR-AANDOMLY $X)})

PAOPEATIES:
NiL



selector2

INVOCATION:
(*FACT (SOAK $X))

CONTEXT:
(*FACT (> (LENGTH $X) 1))

(! (= $F (FACT-INVOKED-KAS-OF $X))}

GOAL ACHIEVER?:
T

EFFECTS:
NIL (! (= $S (SAFETY WANDLERS-OF $F)))
3$5) 0.0
m (! (= $A (UST-DIKCERENCE $F $5)))
(! INTEND (SELEC'%-RANDOMLY $5)))
(! (INTEND (SELECR-RANDOMLY $X))) {! (INTENDED-ALL-SAFETY-BEFORE 35 $R))

PROPEATIES:
NI



Appendix C

The INTERFACE Database

The Interface database is much the same as the RCS database, except that it has knowledge
of transducer readings and switch and talkback positions. The interface has no knowledge
of pressures — it has to deduce these afresh from the latest transducer readings. The major
differences are given below:

following values are op, cl, gpc

(position frcs-prop-tk-isol-12-switch op)
(position frcs-prop-tk-isol-345-switch op)
(position frcs-he-tk-isol-A-switch gpc)
(position frcs-he-tk-isol-B-switch gpc)
(position frcs-manf-1-switch op)

(position frcs-manf-2-switch op)

(position frcs-manf-3-switch op)

(position frcs-manf-4-switch op)

(position frcs-manf-5-switch op)

following values are op, cl, bp

(position frecs-prop-tk-isol-12-talkback op)
(position frcs-prop-tk-isol-345-talkback op)
(position frcs-he-tk-isol-A-talkback op)
(position frcs-he-tk-isol-B-talkback cl)
(position frcs-manf-1i-talkback op)

(position frcs-manf-2-talkback op)

(position frcs-manf-3-talkback op)

(position frcs-manf-4-talkback op)

(position frcs-manf-5-talkback op)
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(mode rcs (status \$unit bad) always)

(* (alarm))

84



Appendix D

The INTERFACE Procedures

The various KAs used in the INTERFACE KA library are given on the following pages.

85



talkback-bp

START

INVOCATION:

M «
(*FACT (POSITION $T BP)) {WAIT-UNTIL

(TRANSFORM-AC '(V (ELAPSED-TIME NOW 10.)
{& (POSITION $T $POS)

CONTEXT:
. ) (POSITION $5 $POS))
(*FAGT (ASSOCIATED-TALKEACK 35 $T)) (NOW (MY -TIMEN)

GOAL ACHIEVER?:
T

A
s3
EFFECTS: (? {POSITION $T BPY)

{! (PRINT-WARNING (FORMAT NIL
“miscompare on ~a*®
PROPEATIES: $THH
NI




xdcr-bad

INVOCATION:
(*FACT (VALUE $XDCA $V)) N

(cfn’;’orsfgcr (TYPE P-XDCA $XDCAY) (7 (& (STATUS $XDTR GOOD) (STATUS $XDCRA GOOD)))

("FACT (ALTEANATE SXDCA SXDCAA))

(*FACT (DISAGREE $V (VALUE-OF $XDCAA)))

("FACT (STATUS $XDCR GOOD))

(*FACT (STATUS $XDCRA GOOD)) m
(*FACT (ASSOCIATED-UNIT $XDCAR $TK)))

«
. WAIT-UNTIL
c;.:ou. ACHIEVERT: (TRANSFORM-AGC "(V (ELAPSED-TIME NOW 2.)
(AGREE (VALUE-OF $XDCR)
(VALUE-OF $XDCRA)))
F({NOW (MY =TIME))))

EFFECTS:
NiL

{? (DISAGREE (YALUE-OF $XDCR) (VALUE-OF $XDCRA))

PAOPERTIES:
((SAFETY-HANDLEA T))

(? (OUT~OF-RANGE (VALUE-OF $XDCR) $TK)) {? (OUT-OF-RANGE (VALUE-OF $XDCRA) $TK))

{=> (STATUS {$XDCR BAD)} (=> (STATUS $XDCRA BAD))

!

! ¢
(PRINT-WARNING {PRINT -WARNING

(FORMAT NIL (FORMAT NIL
“Status of tfansducer ~A is bad" - ~A i -
$XDCRY)) Status of tfansducer ~A is bad

$XDCRA)))



switch-dilemma-1

START
INVOCATION:
(AND (*FACT (POSITION $T 0F))
(*FACT (POSITION $5 CL)))
«
CONTEXT: (WAIT-UNTIL (TRANSFORM-AC (V
(*FACT (ASSOCIATED-TALKBACK $S $T7)) (ELAPSED-TIME NOW
0.)

20,
(& (POSITION $T CL)
GOAL ACHIEVEA?: (POSITION $S
r

CL»)
*UNOW (MY -TIMEN))))

EFFECTS:
NI

(? (& (POSITION $T OP) (POSITION $5 CL)))

PAOPERTIES:
NiL

1
(PRINT-WARNING
(FORMAT NIL
“switch ~A Cl
S

$
ST

talkback ~A OP"



open-or-close-valve

INVOCA TION:
(*FACT (REQUEST SASKER (! (POSITION $V $P0S)))
{! (POSITION $S $POSY
CONTEXT:
(AND (*FACT (SWITCH 5V $3))
(*FACT (TALKBACK $V $7)))

goat ACHIEVEAT: (WAIT-UNITIL (TRANSFORM=AC *(V (POSITION $T
POS)
(ELAPSED-TIME NOW
0

20.))
FUNOW (MY-TIMEND)

EFFECTS!
(POSITION 3V $POS)
(7 (POSITION $T $POS) (27 (~ (POSITION $T $POS))

PROPEATIES:
NIt
(| (SEND-MESSAGE $ASKER (! (SEND-MESSASE $ASKER
(ACHIEYED INTERFACE (FMILED INTERFACE
{! (POSITION $V (! (POSITION $V $POSINN

$POSHM



open-or-close-switch

INVOCATION.
(*FACT (HEQUEST' SASKER (f (POSITION $S $P0OS))))
(! (POSITION $S 3POS))
CONTEXT.
(*FACT ('TYPE SWITCH $S))
GOAL ACHIEVER?:
T

EFFECTS:
(! (SEND-MESSAGE BASKER
(POSITION $3 3P039) {ACHIE/ED INTERFACE
(* (POSITION 35S
$POSMN

PROPEATIES:
NiL



pressurce

INVOCA TION:

(AND (*GOAL (? (PAESSURE $TK $P)))
(®FACT (ASSOCIATED-UNIT $XDCA $TK))
(°FACT (TYPE P-XDCA $XDCR))

{*FACT (ALTEANATE SXDCA $XDCAA)))

CONTEXT:
NIL

GOAL ACHIEVEA?: .
r

& (STATUS $XDCR GOOD) (STATUS SXDCRA BAD)))

EFFECTS:
NIt

(7 (& (STATUS $XDCR GOOD) (3TATUS $XDCRA GOODY)

(? (& (STATUS SXDCR BAL) (STATUS $XDCAA GOOOM))

PROPERTIES:
{{(SAFETY-HANDLER T))

(? (VALUE $XDCR $P))

(1 (=3P
(* 0.5
(+ (VALUE-OF $XDC

) (YALUE-OF $XOCRA

{? (VALUE $XDCRA $P))




pressure-upstream

INVOCATION:

(AND (*GOAL (? (PAESSURE $TK 3P)))
(*FACT (CONNECTS $v $U §TK))
(®FACT (POSITION §¥ 0OP)))

CONTEXT:
NiL

GOAL ACHIEVEAR?:
T

EFFECTS:
NIL

PAOPEATIES:
NiL

(? (PRESSLRE $U $P))



xdcr-status-request

INVOCA TION:
(AND (*FACT (REQUEST SASKEA
(7 (STATUS SXDCA SVAA)))
(*FACT (TYPE P-XDCR $XDCA)))
CONTEXT:
niL
(! (CHECKED-STATUS $XDGR))
z;:_om. ACHIEVEAT?:

ETFECTS: (? (STATUS $XDCA $SCONDITION))
L

¢
PROPEATIES: {SEND-MESSAGE
NIL SASKER

(ACHIEVED INTERFAC
(? (STATUS KODCR SCONDITION)))




check-xdcr

INVOCATION:

(AND (*GOAL (! (CHECKED~-STATUS $XDCA)))
(*FACT (ALTEANATE $XDCA $XDCRA))
(*FACT (ASSOCIATED=-UNIT $XDCH $TK)))

(DISAGREE (VALUE-OF $XDCR) (VALUE-OF $XDCRA))

co T:
N/LNTEX (? (AGREE (VALUE-OF $XDCR) (YALUE-OF $XDCi

GOAL ACHIEVEA?:
T

ZPI'{ECTS: (? (QUT-OF-RANGE « UE-QF $XDCR) $TK)

(? (OUT-OF-RANGE (YALUE-OF $XDCRA) §TK))
PROPEATIES:
NiL (=> (STATUS $XDCR GOOD)}

(=> (STATUS $XDCRA BADY)
(=) (STATUS SXDCR BAD))

Y
¢
E‘E (PRINT-WARNING
(FORMAT NIL
“Status of t-ansducer ~A is bag*
$XOCRA)N
¢
{PAINT-WARNING
(FORMAT NiL
*Status of tfansducer ~A is bad"
$XDCAY))
f

END3



request-monitor

INVOCATION:
(*FACT (AEQUEST $SASKEA (! (MONITORA 3C))))

CONTEXT:
NIt

GOAL ACHIEVERT:
T

EFFECTS:
NIL

PROPEATIES:
NIL

(!l (MONITOR $C))

(1 (SEND-MEASAGE SASKER
(ACHIEYED INTERFACE
{1 {MONITOR 3CH))»



advise

INVOCA TION:
(*FACT (REQUEST SASKEA
(! (ADVISE $X $PERIDD))))

CONTEXT:
NiL

?_OAL ACHIEVER?:

EFFECTS:
(MODE $ASKER $X $PERIOD)

PROPEATIES:
Nit



status-always

INVOCA TION:
(AND (*FACT (MODE JASKER

(STATUS SUNIT $X)

ALWAYS))

(*FACT (STATUS SUNIT $X)))
CONTEXT:
Nit
{! (SEND-MESSAGE SASKER (STATUS SUNIT $X))

GOAL ACHIEVER?:

EFFECTS:
NiL

PROPEATIEY:
NiL



lost-auto-close

INVOCATION:

(AND ("FACT (STATUS $XDCA 84D))
{*FACT (TYPE P-XDCA $XDCRH)) START
(®FACT (ALAAM=-INITIATOA $XDCA))
(PFACT (ASSOCIATED-UNIT $XDCA $TK)))

CONTEXT: ¢
NIL (PRINT -WARNING
{FOAMAT
NIL
GOAL ACHIEVER?: “Overpressurrization protection lost on tank ~A*®
T ST
EFFECTS:

(STATUS (OVERPRESSURIZATION-PAOTECTION=-OF §TK)
LOST)

PAOPEATIES:
NiL



pressure-immediately

INVOCATION:
("FACT (MODE $ASKER START
(PRESSURAE SUNIT ANY)

IMMEDIATELY))
CONTEXT:
NIC

(? (PRESSURE SUNIT $P))

QOAL ACHIEVER?:
r

,EVFFEC TS: (1 {SEND-MESSAGE $ASKER (PRESSURE SUNIT $P))
A

PAOPEATIES: (=> (= (MODE $4SKER
NiL (PRESSURE SUNIT $X)

IMMEDIATELY)))



pressure-no-alt

INVOCATION:
(AND (*GOAL (? (PAESSURE $TK $P)))
(*FACT (ASSOCIATED-UNIT $XDCA $TK))
(*FACT (TYPE P-XDCR $XDCA))
(PFACT (STATUS 3XDCA GO0D))
(®FACT (~ (ALTEANATE $XOCA $XDCAA))))
CONTEXT:
NIt

GOAL ACHIEVERA?:
T

EFFECTS:
NiL (2 (STATUS $XDCR GOODY)
PROPEATIES: (7 (VALUE $XDCR $PY)

((SAFETY-HANDLER T))



switch-valve

INVOCATION:
{AND (*GOAL (f (POSITION $S $P0S)))
("FACT (TYPE SWITCH $8)))

CONTEXT:
NiL

GOAL ACHIEYEA?:
T

EFFECTS:
(POSITION 33 $P0OS3)

PROPEATIES:
NI

e

«
(Qutﬂq‘
(FORNIAT NIL
"Place valve switch ~A in position ~A®
s

$POS)
$POSD

{! (SEND-MESSAGE SIM (POSITION 38 $POS)))




xdcr-bad-0-reading

INVOCATION:
(AND (*FACT (VALUE SXDCA 3V))
(*FACT (TYPE P~XDCA $XDCA))
(°FAGT (C= 3V 0.))
(*FACT (STATUS $XDCR GOOD)))

CONTEXT:
NiL

(? (STATUS $XDCR GOOD)}

GQOAL ACHIEVEA?: (=> {STATUS $XOCR BADQ
r

!

EFFECTS: !
NiL ({PRINT-WARNING
(FORMAT NiL
“Status of tfansducer ~A is bad®
$XDCAN)
PROPEATIES:

((SAFETY-HANDLEA T))



monitor

INVOCATION:
(AND (*GOAL (! (MONITOR $C)))
{("FACT (FOO B8AR)))

o

CONTEXT: (WAIT-UNTIL

niL (TRANSFOAM-AC
"CONDITION

QOAL ACHIEVEA?: *({CONDITION (FilJD-BINDING $CHN))
a :

EFFECTS:
nIL

PAOPEATIES:
NiL




switch-dilemma-2

STAAT

INVOCATION:
(AND (*FACT (POSITION $T CL))

(*FACT (POSITION $5 0F})

("FACT (ASSOCIATED-TALKBACK $5 37)))

]

CONTEXT: (WAIT-UNTIL (TRANSFORM=-AC ‘(¥
NiL (ELAPSED-TIME NOW

20.)
(& (POSITION §T OP}
GOAL ACHIEYEA?: (POSITICN $5

T oPY)
(INOW (MY -TIME))))))

EFFECTS:
NiL

(? (& (POSITION $T CL} (POSITION $8 OP)))

PROPEATIES:

{t
(PAINT-WARNING
(FORMAT NiL
;1wiu:n ~A OP, taikb&ck ~A CL"

S
s



retract

INVOCATION: ACTION:

(*GOAL (f (RETAACTED $P))) (OELETE-FACT-FAOM=-KA $P)
CONTEXT:

NiL

GOAL ACHIEVYER?:
T

EFFECTS:
NI

PAOPEATIES:
Nit



monitor-pressure

INVOCATION:
(AND (*GOAL (! (MONITOR (PRESSUAE-BELOW $TK
SLIMIT))))

(*FACT (ASSOCIATED-UNIT SXDCA 3TK))
{*FACT (STATUS $XDCA GO0D)))

CONTEXT:

niL (| {(WAIT-UNTIL ({TRANSFORM=-AC *(¢ (VALUE-OF $XDCR)

SUMIT) 'NIL)Y)

GQOAL ACHIEVERA?:
r

EFFECTS:
NiL

PROPEATIES:
NIL



out-of-range

INVOCATION:

(AND (*GOAL (? (OUT-OF-AANGE $V SUNIT)))
(*FACT (PAESSURE~UL SUNIT $UL))
(*FACT (PAESSURE-LL SUNIT §LL)))

CONTEXT:
NIL
GOAL ACHIEVERT: (7 (V0 SV SUL) (< 3V SLLIY)
EFFECTS: &
NIL ¢
(PRINT-WARNING
(FORMAT
NiL
“The pressure ~A is oJt of range for unit ~A®
v
SUNIT))

PAOPEATIES:
NiL



vernier-delta-p

INVOCATION:
(AND (*FACT (TYPE FUEL-TANK $TK1))
(*FACT (PRESSURE 3TK1 $P1))
(*FACT (PAAT-OF $P-8VYS§1 $TK1))
(*FACT (OTHEA-PROPELLANT-S5YSTEM §P-SYS 1
$P-8vS2))
(®FACT (PART-OF 3P-SYS2 $TK2))
(®FACT (TYPE OKIDANT-TANK $TK2))
CONTISAST (PRESSUAE $TK2 $P2))
NiL (®FACT (> (- $P1 $P2) 20.))) o
(PAINT-WARNING
GOAL ACHIEVER?: (FORMAT
T "Pressure in tank ~A is 20 psi above ox tank pressure.
Inhibit vernier aperations (FA 6-41)°
$TKNN)

EFFECTS:
NIL

PROPEATIES:
NIL



pressure-downstream

INVOCATION:

{AND (*GOAL (? (PAESSURE $TK 3P)))
(*FACT (CONNECTS 3V STH $U))
{®FACT (POSITION 3V 0OP)))

CONTEXT:
NIL

GOAL ACHIEVEA?:
T

EFFECTS:
NIt

PAROPEATIES:
NIE

(? (PRESSLRE SU 3$PY)



pressure-request

INVOCA TION:
("FACT (REQUEST $ASKER
(7 (PAESSURE SUNIT $P-ANY))))

CONTEKXT:
NiL

(;OAL ACHIEVER?:

EFFECTS:
NiL

PROPERTIES:
NiL

{7 (PRESSURE SUNIT 3P))

(! (SEND-MESSAGE ${ASKER
(ACHIEYED INTERFACE
(? (PRESSURE SUNIT
PO



request-pressure-change

INVOCATION:
(*FACT (REQUEST 3ASKEA
(? (PAESSURE~CHANGE SUNIT
SOELTA-ANY))))

CONTEXT:
NIL

(? (PRESSURE-CHANGE SUNIT SDELTA))
GOAL ACHIEVEA?:
T

«
: (SEND-MESSAGE
EFFECTS: SKER

NI $A
(ACHIEVED INTERFACE
(7 (PRESSURE-CIANGE SUNIT $SDELTA}NY)

PROPEATIES:
NIL



pressure-change

INVOCA TION:
(*GOAL (? (PAESSURE-CHANGE SUNIT SDELTA)))

CONTEKXT:
NIL

GOAL ACHIEVYEA?:
r

EFFECTS:
NiL

PROPEATIES:
NiL

@
(? (PRESSURE SUNIT $P1))
381

{1 (SLEZP 5.))

{? (PRESSURE SUNIT $P2))

(I (= SDELTA (—1$P2 $P1)})



selector2

INVOGA TION:
(*FAGT (SOAK $X)) @

CONTEXT:
(*FACT (> (LENGTH 3X) 1.))

(1 {= $F (FACT-INVOKED-KAS-OF $X))}

?_OAL ACHIEVER?:

EFFECTS:
NIL

(! (= $8 (SAFETY NOLERS-OF $F)))

(¢ (= $A (UST-DICERENCE $F $3)))

(! INTEND (SELEC'A-AANDOMLY $5)))

{1 INTEND (SELECR:RANDOMLY $X))) (1 INTENDED-ALL-SAFETY-BEFORE 35 $R))

PROPEATIES:
NIL



selector

INVOCATION:
(*FACT (SOAK 3X))

CONTEXT:
(AND (*FACT (NOSAFETY BEFORE))
(*FACT (> (LENGTH $X) 1.)))

(! (= $F (FACT-INVOKED-KAS-OF $X)))

GQOAL ACHIEVER?:
r

(! (= 0. (LENGTH $F)))

EFFECTS:
NiL
NOLERS-OF $X))) ! (INTEND

(I (= $S (SAFETY-

(! (INTEND (SELECR-RANDOMLY $3)))

{1 (INTEND (SELECR:RANOOMLY $X)))

PAOPEATIES:
NIL






